a
play

a HIGH IMPEDANCE SENSORS I Photodiode Preamplifiers I Piezoelectric - PowerPoint PPT Presentation

PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING 1 Introduction 2 Bridge Circuits 3 Amplifiers for Signal Conditioning 4 Strain, Force, Pressure, and Flow Measurements I 5 High Impedance Sensors 6 Position and Motion Sensors 7


  1. PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING 1 Introduction 2 Bridge Circuits 3 Amplifiers for Signal Conditioning 4 Strain, Force, Pressure, and Flow Measurements I 5 High Impedance Sensors 6 Position and Motion Sensors 7 Temperature Sensors 8 ADCs for Signal Conditioning 9 Smart Sensors 10 Hardware Design Techniques 5.0 a

  2. HIGH IMPEDANCE SENSORS I Photodiode Preamplifiers I Piezoelectric Sensors N Accelerometers N Hydrophones I Humidity Monitors I pH Monitors I Chemical Sensors I Smoke Detectors I Charge Coupled Devices and Contact Image Sensors for Imaging 5.1 a

  3. PHOTODIODE APPLICATIONS I Optical: Light Meters, Auto-Focus, Flash Controls I Medical: CAT Scanners (X-Ray Detection), Blood Particle Analyzers I Automotive: Headlight Dimmers, Twilight Detectors I Communications: Fiber Optic Receivers I Industrial: Bar Code Scanners, Position Sensors, Laser Printers 5.2 a

  4. PHOTODIODE EQUIVALENT CIRCUIT INCIDENT LIGHT PHOTO R SH (T) C J CURRENT IDEAL 100k Ω Ω - DIODE 100G Ω Ω NOTE: R SH HALVES EVERY 10°C TEMPERATURE RISE 5.3 a

  5. PHOTODIODE MODES OF OPERATION – – + + –V BIAS PHOTOVOLTAIC PHOTOCONDUCTIVE I Zero Bias I Reverse Bias I No "Dark" Current I Has "Dark" Current I Linear I Nonlinear I Low Noise (Johnson) I Higher Noise (Johnson + Shot) I Precision Applications I High Speed Applications 5.4 a

  6. PHOTODIODE SPECIFICATIONS Silicon Detector Part Number SD-020-12-001 I Area: 0.2mm 2 I Capacitance: 50pF I Shunt Resistance @ 25°C: 1000M Ω Ω I Maximum Linear Output Current: 40µA I Response Time: 12ns I Photosensitivity: 0.03µA / foot candle (fc) 5.5 a

  7. SHORT CIRCUIT CURRENT VERSUS LIGHT INTENSITY FOR PHOTODIODE (PHOTOVOLTAIC MODE) ENVIRONMENT ILLUMINATION (fc) SHORT CIRCUIT CURRENT Direct Sunlight 1000 30µA Overcast Day 100 3µA Twilight 1 0.03µA Full Moonlit Night 0.1 3000pA Clear Night / No Moon 0.001 30pA 5.6 a

  8. CURRENT-TO-VOLTAGE CONVERTER (SIMPLIFIED) R = 1000M Ω Ω I SC = 30pA (0.001 fc) _ V OUT = 30mV Sensitivity: 1mV / pA + 5.7 a

  9. LOW BIAS CURRENT PRECISION BiFET OP AMPS (ELECTROMETER GRADE) PART # V OS , TC V OS , I B , 0.1Hz TO 10Hz PACKAGE MAX* MAX MAX* NOISE AD549 250µV 5µV/°C 100fA 4µV p-p TO-99 AD645 250µV 1µV/°C 1.5pA 2µV p-p TO-99, DIP AD795 250µV 3µV/°C 1pA 2.5µV p-p SOIC, DIP * 25°C SPECIFICATION 5.8 a

  10. BiFET OP AMP INPUT STAGE +V S _ OFFSET VOLTAGE 2 TRIM RESISTORS REST OF + AMPLIFIER 3 6 V BIAS 1 5 DRIFT TRIM NULL NULL RESISTORS –V S 5.9 a

  11. AD795 BiFET OP AMP KEY SPECIFICATIONS I Offset Voltage: 250µV Max. @ 25°C (K Grade) I Offset Voltage Drift: 3µV / °C Max (K Grade) I Input Bias Current: 1pA Max @ 25°C (K Grade) I 0.1Hz to 10Hz Voltage Noise: 2.5µV p-p I 1/f Corner Frequency: 12Hz I Voltage Noise: 10nV / √ √ Hz @ 100Hz I Current Noise: 0.6fA / √ √ Hz @ 100Hz I 40mW Power Dissipation @ ± ± 15V I 1MHz Gain Bandwidth Product 5.10 a

  12. LEAKAGE CURRENT PATHS C2 R2 +V S _ 7 2 6 3 + 4 –V S 5.11 a

  13. PCB LAYOUT FOR GUARDING DIP PACKAGE INVERTER 8 1 2 GUARD _ AD795 7 INPUT 2 6 AD795 3 "N" 6 GUARD 3 + PACKAGE 4 5 FOLLOWER 1 8 AD795 3 + 6 2 7 GUARD "N" AD795 PACKAGE 2 _ INPUT 3 6 GUARD 4 5 5.12 a

  14. PCB LAYOUT FOR GUARDING SOIC PACKAGE INVERTER GUARD 1 8 2 _ INPUT 2 7 AD795 6 AD795 3 6 GUARD 3 "R" + PACKAGE 5 4 –V S PINS 1, 5, 8 ARE OPEN ON "R" FOLLOWER PACKAGE 8 1 AD795 3 + 6 GUARD 7 2 "R" AD795 PACKAGE 2 _ INPUT 6 3 4 5 GUARD –V S 5.13 a

  15. INPUT PIN CONNECTED TO "VIRGIN" TEFLON INSULATED STANDOFF BENT INPUT PIN: PIN 2 FOR INVERTER PIN 3 FOR FOLLOWER INPUT SIGNAL LEAD AD795 "N" PACKAGE PC BOARD "VIRGIN" TEFLON INSULATED STANDOFF 5.14 a

  16. AD795 PREAMPLIFIER DC OFFSET ERRORS R2 1000M Ω Ω I B ~ _ OFFSET RTO V OS R1 AD795K I B + DC NOISE GAIN = 1 + R2 R3 R1 I B DOUBLES EVERY 10°C TEMPERATURE RISE R1 = 1000M Ω Ω @ 25°C (DIODE SHUNT RESISTANCE) R1 HALVES EVERY 10°C TEMPERATURE RISE R3 CANCELLATION RESISTOR NOT EFFECTIVE 5.15 a

  17. AD795K PREAMPLIFIER TOTAL OUTPUT OFFSET ERROR 0°C 25°C 50°C 70°C V OS 0.325mV 0.250mV 0.325mV 0.385mV Noise Gain 1.1 2 7 24 V OS Error 0.358mV 0.500mV 2.28mV 9.24mV RTO I B 0.2pA 1.0pA 6.0pA 24pA I B Error 0.2mV 1mV 6.0mV 24mV RTO Total Error 0.558mV 1.50mV 8.28mV 33.24mV RTO 5.16 a

  18. GENERALIZED NOISE GAIN (NG) BODE PLOT Open Loop 100k NG = 1 + R2 ( R1 C1s + 1 ) Gain R1 ( R2 C2s + 1 ) GAIN τ τ 1 s + 1 1 + R2 = C1 C2 τ τ 2 s + 1 R1 10k B τ τ 1 = R1 R2 C1 + C2 R1 R2 R1+R2 _ 1k τ 2 = R2 C2 τ + C2 = 0 A 100 1 + C1 f CL = Closed Loop BW C2 1 f 1 = π τ τ 2 π 1 1 10 1 + R2 f 2 = π τ τ 2 π 2 R1 f U 1 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 5.17 a

  19. NOISE GAIN OF AD795 PREAMPLIFIER @ 25°C C1 C2 100k B R1 = 1000M Ω Ω @ +25°C GAIN R2 = 1000M Ω Ω R1 R2 _ C1 = 50pF 10k C2 = 10pF I D + f u = 1MHz A AD795 Open Loop Gain 1 Signal BW = 1k 2 π π R2 C2 100 167kHz = f cl Closed Loop BW 16Hz = Signal BW 10 5.3Hz f u =1MHz NG = 6 NG = 2 1 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 5.18 a

  20. VOLTAGE AND CURRENT NOISE OF AD795 VOTAGE NOISE DENSITY CURRENT NOISE DENSITY 1k 100 nV fA Hz Hz 100 10 8 nV/ √ √ Hz 0.6 fA / √ √ Hz 10 1.0 1 / f Corner = 12Hz 0 0.1 1 10 100 1k 10k 100k 1M 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) 5.19 a

  21. AMPLIFIER NOISE MODEL C2 1k Ω Ω @ +25°C has 4nV/ √ √ Hz Noise V N,R2 C1 R2 ∼ B V N,R1 R1 I N– TOTAL NOISE RTO = ∼ ∼ – ∫ V 1 (f) 2 df + ∫ V 2 (f) 2 df + ... V N (f) A V N,R3 R3 V ON I N+ ∼ + NOISE SOURCE RTO INTEGRATION BW V N (f) V N (f)•Noise Gain 1.57•Closed Loop BW I N+ I N+ •R3• Noise Gain 1.57•Closed Loop BW I N – I N – •R2 1.57 •Signal BW R1 V N,R1 •(R2/R1) 1.57 •Signal BW R2 V N,R2 1.57 •Signal BW R3 V N,R3 •Noise Gain 1.57•Closed Loop BW 5.20 a

  22. OUTPUT VOLTAGE NOISE COMPONENTS SPECTRAL DENSITIES (nV / √ √ Hz) @ +25°C 10k 16Hz = Signal BW TOTAL AREAS: 4000 R1 : 20µV RMS R1, R2 R2 : 20µV RMS I N– 1k I N– : 3µV RMS 600 nV V N (f ) : 24.6µV RMS Hz TOTAL = 37.6µV RMS V N (f) 100 48 40 16Hz 12Hz 5.3Hz f CL = 167kHz 10 = Closed Loop BW C1 C2 B R1 = 1000M Ω Ω @ +25°C R1 R2 R2 = 1000M Ω Ω _ 1 C1 = 50pF I D C2 = 10pF + A AD795 f u = 1MHz 0.1 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 5.21 a

  23. AD795 PHOTODIODE PREAMP WITH OFFSET NULL ADJUSTMENT 10pF GAIN: 1mV / pA 1000M Ω Ω NOISE: NOISE: _ 37.6µV RMS 28.5µV RMS 20Hz AD795K LOWPASS I D FILTER + +15V 100k Ω Ω INPUT OFFSET 1M Ω Ω NULL RANGE: ± ± 1.5mV 100 Ω Ω 0.1µF –15V 5.22 a

  24. AD795 PHOTODIODE CIRCUIT PERFORMANCE SUMMARY I Output Offset Error (0°C to +70°C) : 33mV I Output Sensitivity: 1mV / pA I Output Photosensitivity: 30V / foot-candle I Total Output Noise @ +25°C : 28.5µV RMS I Total Noise RTI @ +25°C : 44fA RMS, or 26.4pA p-p I Range with R2 = 1000M Ω Ω : 0.001 to 0.33 foot-candles I Bandwidth: 16Hz 5.23 a

  25. COMPENSATING FOR INPUT CAPACITANCE IN A CURRENT-TO-VOLTAGE CONVERTER C2 f 2 = SIGNAL BW R2 f u = OP AMP UNITY _ GAIN BW PRODUCT I C1 f u 1 Total Input f 1 = 2 π π R2 C1 Capacitance + –V B 1 f 2 = 2 π π R2 C2 OPEN LOOP GAIN f 2 = f 1 • f u GAIN UNCOMPENSATED C1 NOISE C2 = 2 π π R2 f u GAIN COMPENSATED FOR 45° PHASE MARGIN f 2 f u 1 f f 2 = 2 π π R2 C1 f 1 f u 5.24 a

  26. FET-INPUT OP AMP COMPARISON TABLE FOR WIDE BANDWIDTH PHOTODIODE PREAMPS Input Bias Unity GBW Input f u /C IN Voltage Noise Current Product Capacitance (MHz/pF) @ 10kHz I B (pA) (nV/ √ Hz) fu (MHz) C IN (pF) AD823 16 1.8 8.9 3 16 AD843 34 6 5.7 600 19 AD744 13 5.5 2.4 100 16 AD845 16 8 2 500 18 OP42 10 6 1.6 100 12 AD745* 20 20 1 250 2.9 AD795 1 1 1 1 8 AD820 1.9 2.8 0.7 2 13 AD743 4.5 20 0.2 250 2.9 *Stable for Noise Gains ≥ ≥ 5, Usually the Case, Since High Frequency Noise Gain = 1 + C1/C2, and C1 Usually ≥ ≥ 4C2 5.25 a

  27. HP 5082-4204 PHOTODIODE I Sensitivity: 350µA @ 1mW, 900nm I Maximum Linear Output Current: 100µA I Area: 0.002cm 2 (0.2mm 2 ) I Capacitance: 4pF @ 10V Reverse Bias I Shunt Resistance: 10 11 Ω Ω I Risetime: 10ns I Dark Current: 600pA @ 10V Reverse Bias 5.26 a

  28. 2MHz BANDWIDTH PHOTODIODE PREAMP WITH DARK CURRENT COMPENSATION ≈ 0.8pF ≈ C2 C D = 4pF, C IN = 1.8pF 33.2k Ω Ω 33.2k Ω Ω 33.2k Ω Ω C1 = C D + C IN = 5.8pF R2 = 100k Ω Ω +15V _ –10V D1 C1 AD823 5.8pF D2 + D1, D2: HP-5082-4204 –15V 100k Ω Ω 0.1µF LOW LEAKAGE POLYPROPYLENE 5.27 a

  29. EQUIVALENT CIRCUIT FOR OUTPUT NOISE ANALYSIS C2 C1 = 5.8pF R2 C2 = 0.76pF V N = 16nV/ √ √ Hz R2 = 100k Ω Ω ~ _ V N,R2 ~ V N AD823 C1 C1 1 + C2 + V BIAS = –10V NOISE GAIN 1 f 1 f 2 fu 274kHz 2.1MHz 16MHz V N RTO NOISE ≈ ≈ V N 1 + C1 1.57 f 2 = 250µV RMS C2 V N,R2 RTO NOISE ≈ ≈ 4kTR2 • 1.57f 2 = 73µV RMS 250 2 + 73 2 TOTAL RTO NOISE = = 260µV RMS 10V DYNAMIC RANGE = 20 log = 92dB 260µV 5.28 a

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend