a posteriori estimates and mesh adaptation for the
play

A posteriori estimates and mesh adaptation for the thermistor - PowerPoint PPT Presentation

A posteriori estimates and mesh adaptation for the thermistor problem Claire CHAUVIN , Christophe TROPHIME , Pierre SARAMITO claire.chauvin@grenoble.cnrs.fr Grenoble High Magnetic Field Laboratory Laboratoire Jean Kuntzmann


  1. A posteriori estimates and mesh adaptation for the thermistor problem Claire CHAUVIN ∗ , Christophe TROPHIME ∗ , Pierre SARAMITO † claire.chauvin@grenoble.cnrs.fr ∗ Grenoble High Magnetic Field Laboratory † Laboratoire Jean Kuntzmann CNRS, 25 avenue des Martyrs, Grenoble Campus Universitaire, Grenoble claire.chauvin@grenoble.cnrs.fr (claire.chauvin@grenoble.cnrs.fr) 1 / 14

  2. Outline The Grenoble High Magnetic Field Lab 1 The thermistor problem: study and numerical resolution 2 A posteriori estimate 3 Application to adaptation 4 (claire.chauvin@grenoble.cnrs.fr) 2 / 14

  3. 1. The Grenoble High Magnetic Field Lab Resistive magnets (34 Tesla , 30000 A , 20 MW ) Water cooling, high flow (20 l / s ) Polyhelice Geometrical optimization [1]. Heating effect and mechanical stress: Joule, Lorentz. (claire.chauvin@grenoble.cnrs.fr) 3 / 14

  4. 1. The Grenoble High Magnetic Field Lab Potential φ in a cut of a 3D Magnet... ... on an helix under some simplifications. Magnetic field b and current density j : ∀ x ∈ Ω , j ( x ) = σ ( u ) ∇ φ ( x ) , Z ∀ x ∈ ω , b ( x ) = j ( y ) ∧ ∇ G ( x , y ) dy , µ Ω Estimate on the numerical error on b ? (claire.chauvin@grenoble.cnrs.fr) 4 / 14

  5. 2. The thermistor problem Model Find ( φ , u ) : Ω → R s.t.:  − div ( σ ( u ) ∇φ ) = f in Ω ,   σ ( u ) | ∇φ | 2 − div ( κ ( u ) ∇ u ) = in Ω ,     φ = φ 0 on Γ 1 ,  ( C ) − σ ( u ) ∇φ . n = on Γ 2 , 0   = on Γ 2 , u u w     − κ ( u ) ∇ u . n = on Γ 1 . 0  Ω , ω ⊂ R 2 , ω ∩ Ω = ∅ . σ et κ bounded, Lipschitz-continuous on R + ∗ . Difficulties Geometry: highly non convex, fissures, holes. Numeric: mesh, method? A posteriori estimate on b ? (claire.chauvin@grenoble.cnrs.fr) 5 / 14

  6. 2. The thermistor problem Model Let Ω be a polygonal domain, and ω i the interior angle between two consecutive edges of Ω . Let ω ∗ i s.t.: ω ∗ i = ω i if the two edges have the same BC, ω ∗ i = 2 ω i else. Let ω ∗ = max i ( ω ∗ i ) If κ , σ : Ω �→ R , ∈ C m (Ω) and f ∈ L s (Ω) , s > 1 . ⇒ u , φ ∈ H 1 + 2 / q (Ω) , q > max ( q ∗ , 2 ) , q ∗ = 2 πω ∗ = i ( C h ) : Find u h ∈ V h and φ h ∈ W h s.t. Z Z Ω σ ( u h ) | ∇φ h | 2 v h d x , ∀ v h ∈ V h Ω κ ( u h ) ∇ u h . ∇ v h d x = Z Z Ω σ ( u h ) ∇φ h . ∇ψ h d x = f ψ h d x , ∀ ψ h ∈ W h Ω (claire.chauvin@grenoble.cnrs.fr) 6 / 14

  7. 2. The thermistor problem Model If more general conditions on Ω , well-posed problem, associated to the limit-problem [2,3]: Let τ ( θ ) = σ o κ − 1 ( u ) , ( C ′ ) : Find θ ∈ L 2 (Ω) and φ ∈ H 1 0 (Ω) s.t. Z Z Ω τ ( θ ) | ∇φ | 2 (∆ − 1 ξ ) d x , ∀ ξ ∈ L 2 (Ω) Ω θ . ξ d x = Z Z f ψ d x , ∀ ψ ∈ H 1 (Ω) Ω τ ( θ ) ∇φ . ∇ψ d x = Ω 0 (Ω) , s < 1 / 2 solutions of ( C ′ ) . ⇒ ∃ ( θ , φ ) ∈ H s (Ω) × H 1 = (claire.chauvin@grenoble.cnrs.fr) 7 / 14

  8. 2. The thermistor problem Numerical simulation Relaxed Fixed-Point Algorithm: Z Z Z u n + 1 v d x +∆ t Ω σ ( u n ) | ∇φ n + 1 | 2 v d x Ω κ ( u n ) ∇ u n + 1 ∇ v d x = ∆ t Ω Z u n v d x + ∀ v ∈ V h , Ω Z Z Ω σ ( u n ) ∇φ n + 1 ∇ w d x = ∀ w ∈ W h , f w d x Ω u n + 1 = ∑ u n + 1 v i , v i finite element of order k on quads. i i (gmsh, deal.ii) Stop when � u n + 1 − u n � L 2 < ε . (claire.chauvin@grenoble.cnrs.fr) 8 / 14

  9. 3. A posteriori estimates Looking forward an estimate η s.t. � u − u h � H 1 + � φ − φ h � H 1 � η � h p . Theoretical estimate [5] with residual and edge terms. Kelly estimate of u defined on an element K [6]: � 2 � κ ( u h ) ∂ u h K ( u ) = h Z η 2 ⇒ convergence order γ ds = ∂ n 24 ∂ K Comparison of γ + 1 with λ solution of [3]: � u hn − 1 − u hn − 2 � L 2 (Ω) � u hn − u hn − 1 � L 2 (Ω) = ( h n − 2 / h n − 1 ) λ − 1 ( 1 ) 1 − ( h n / h n − 1 ) λ = ⇒ Validation of Kelly estimate. = ⇒ Numerical indicators for the error: γ et λ . (claire.chauvin@grenoble.cnrs.fr) 9 / 14

  10. 3. A posteriori estimates Comparison with an analytical solution | φ − φ h | H 1 (Ω) η φ Error | φ h | H 1 (Ω) . Estimate | φ h | H 1 (Ω) . Q 1 Q 2 Q 3 λ γ λ γ λ γ rel. err. rel. err. rel. err. φ 1.99 1.97 0.84 2.97 2.95 2.73 3.99 3.51 2.85 u 2.00 2.00 0.98 2.98 2.54 2.49 3.96 2.41 2.96 Convergence orders for φ and u and several Q k . rel. err. = � u − u h � L 2 . � u � L 2 (claire.chauvin@grenoble.cnrs.fr) 10 / 14

  11. 4. Application to adaptation η φ Non convex geometry η φ + η u Refinment criteria: η u u (claire.chauvin@grenoble.cnrs.fr) 11 / 14

  12. 4. Application to adaptation Non convex geometry Q 1 Q 2 Q 3 γ λ γ λ γ λ φ 1.42 0.70 1.43 0.67 1.45 0.67 u 1.52 0.55 1.82 0.53 1.76 0.54 Convergence orders for φ and u and several Q k . ⇒ Ok with the theory, u and φ ∈ H s , with s > 1 . 66. = (claire.chauvin@grenoble.cnrs.fr) 12 / 14

  13. Conclusion and perspectives Numerical study of an efficient A posteriori estimate for the thermistor problem [3]. Efficiency of the adaptive scheme. Limitation by hanging nodes on quads? Future developpements: A posteriori error estimate for the magnetic field, by means of a optimal control approach [7]. (claire.chauvin@grenoble.cnrs.fr) 13 / 14

  14. References [1] C. Trophime et al., Magnetic Field Homogeneity Optimization of the Giga-NMR Resistive Insert , IEEE Trans. Appl. Supercond., 16 (2), 1509–1512, 2005. [2] C. Bernardi et al., A model for two coupled turbulent fluids. Part I and III . [3] C. Chauvin et al., A posteriori estimates and adaptive FEM for the thermistor problem, en préparation. [4] W. Allegretto et al., A posteriori error analysis for FEM of thermistor problems , Int. J. Numer. Anal. Model., 3 (4), 413–436, 2006. [5] D.W. Kelly et al., A posteriori error analysis and adaptive processes in the finite element method - Part I: Error analysis , Int. J. Num. Meth. Engrg., 19 , 1593–1619, 1983. [6] W. Bangerth, R. Hartmann et G. Kanschat, deal.II — a General Purpose Object Oriented Finite Element Library , ACM Trans. Math. Software, 33 (4), 2007. [7] R. Becker et R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples , East-west J. Num. Math., 4 , 237–264, 1996. (claire.chauvin@grenoble.cnrs.fr) 14 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend