a posteriori error estimates
play

A posteriori error estimates Part II Complementary estimates Tom - PowerPoint PPT Presentation

A posteriori error estimates Part II Complementary estimates Tom a s Vejchodsk y vejchod@math.cas.cz Institute of Mathematics, Academy of Sciences Zitn a 25, 115 67 Praha 1 Czech Republic E M H A A T T I C M S f


  1. A posteriori error estimates Part II – Complementary estimates Tom´ aˇ s Vejchodsk´ y vejchod@math.cas.cz Institute of Mathematics, Academy of Sciences ˇ Zitn´ a 25, 115 67 Praha 1 Czech Republic E M H A A T T I C M S f o E T U s e T c I n c T e i l b S i c u N S p f e I o R y h m c e e z d C a c A May 29, 2012, Technical University of Ostrava

  2. T H E M A T M A I C S f o E T U s e T c Outline I n c T e i l S i b c u N S p f e I o R y m h c e e d C z a c A ◮ Toy problem ◮ Derivation of complementary estimates ◮ Two options ◮ (A) Error majorant ◮ (B) Dual finite elements ◮ Energy minimization ◮ Method of hypercircle ◮ Numerical examples ◮ Conclusions

  3. T H E M A T M A I C S f o E T U s e T c Toy problem I n c T e i l S i b c u N S p f e I o R y m h c e e d C z a c A Classical formulation: − ∆ u = f in Ω , u = 0 on ∂ Ω Weak formulation: V = H 1 0 (Ω) u ∈ V : a ( u , v ) = F ( v ) ∀ v ∈ V Notation: ◮ a ( u , v ) = ( ∇ u , ∇ v ) ◮ F ( v ) = ( f , v ) � ◮ ( ϕ, ψ ) = ϕψ d x Ω ◮ Error: e = u − u h | 2 = a ( e , e ) = ( ∇ e , ∇ e ) = �∇ e � 2 ◮ Energy norm: | | | e | | 0

  4. T H E M A T M A I C S f o E T U s e T c Derivation I n c T e i l S i b c u N S p f e I o R y m h c e e d C z a c A Divergence thm.: (div y , v ) + ( y , ∇ v ) = 0 ∀ y ∈ H (div , Ω) , v ∈ V Friedrichs’ inequality: � v � 0 ≤ C F | | | v | | | ∀ v ∈ V Theorem: Let u h ∈ V be arbitrary then | | | u − u h | | | ≤ η ( u h , y ) η ( u h , y ) = C F � f + div y � 0 + � y − ∇ u h � 0 ∀ y ∈ H (div , Ω) Proof: v ∈ V a ( u − u h , v ) = ( f , v ) − ( ∇ u h , ∇ v ) = ( f + div y , v ) + ( y − ∇ u h , ∇ v ) ≤ � f + div y � 0 � v � 0 + � y − ∇ u h � 0 �∇ v � 0 ≤ ( C F � f + div y � 0 + � y − ∇ u h � 0 ) | | | v | | | Set v = u − u h . �

  5. T H E M A T M A I C S f o E T U s e T c Derivation I n c T e i l S i b c u N S p f e I o R y m h c e e d C z a c A Divergence thm.: (div y , v ) + ( y , ∇ v ) = 0 ∀ y ∈ H (div , Ω) , v ∈ V Friedrichs’ inequality: � v � 0 ≤ C F | | | v | | | ∀ v ∈ V Theorem: Let u h ∈ V be arbitrary then | | | u − u h | | | ≤ η ( u h , y ) η ( u h , y ) = C F � f + div y � 0 + � y − ∇ u h � 0 ∀ y ∈ H (div , Ω) Lemma: Let u ∈ V be the exact solution. Then | | | u − u h | | | = η ( u h , ∇ u ).

  6. T H E M A T M A I C S f o E T U s e T c Two options I n c T e i l S i b c u N S p f e I o R y m h c e e d C z a c A (A) Error majorant | | | u − u h | | | ≤ η ( u h , y ) η ( u h , y ) = C F � f + div y � 0 + � y − ∇ u h � 0 ∀ y ∈ H (div , Ω) [S. Repin et al., 2000–] (B) Dual finite elements | | | u − u h | | | ≤ � η ( u h , y ) η ( u h , y ) = � y − ∇ u h � 0 � ∀ y ∈ Q ( f ) Q ( f ) = { y ∈ H (div , Ω) : f + div y = 0 } [J. Haslinger, I. Hlav´ aˇ cek, M. Kˇ r´ ıˇ zek, 1970s–80s]

  7. T H E M A T M A I C S f o E T U s e T c (A) Error majorant I n c T e i l S i b c u N S p f e I o R y m h c e e d z C a c A | | | u − u h | | | ≤ η ( u h , y ) = C F � f + div y � 0 + � y − ∇ u h � 0 ∀ y ∈ H (div , Ω) � � 1 + 1 | 2 ≤ � η 2 ( u h , y , β ) = C 2 F � f + div y � 2 0 +(1 + β ) � y − ∇ u h � 2 | | | u − u h | | 0 β ∀ β > 0 � � 1 + 1 Proof: ( A + B ) 2 ≤ A 2 + (1 + β ) B 2 ∀ β > 0 β Equality for β = A / B . �

  8. T H E M A T M A I C S f o E T U s e T c (A) Error majorant I n c T e i l S i b c u N S p f e I o R y m h c e e d C z a c A | | | u − u h | | | ≤ η ( u h , y ) = C F � f + div y � 0 + � y − ∇ u h � 0 ∀ y ∈ H (div , Ω) � � 1 + 1 | 2 ≤ � η 2 ( u h , y , β ) = C 2 F � f + div y � 2 0 +(1 + β ) � y − ∇ u h � 2 | | | u − u h | | 0 β ∀ β > 0 Notation: W = H (div , Ω) Complementary problem (equivalent formulations): (i) Find y ∈ W : η ( u h , y ) ≤ η ( u h , w ) ∀ w ∈ W η 2 ( u h , w , � η 2 ( u h , y , β ) ≤ � (ii) Find y ∈ W and β > 0 : � β ) ∀ w ∈ W , � β > 0 If β > 0 fixed: η 2 ( u h , y , β ) ≤ � η 2 ( u h , w , β ) (iii) Find y ∈ W : � ∀ w ∈ W (iv) Find y ∈ W : (div y , div w ) + β ( y , w ) = β ( ∇ u h , w ) − ( f , div w ) C 2 C 2 F F ∀ w ∈ W

  9. T H E M A T M A I C S f o E T U s e T c (A) Error majorant I n c T e i l S i b c u N S p f e I o R y m h c e e d C z a c A | | | u − u h | | | ≤ η ( u h , y ) = C F � f + div y � 0 + � y − ∇ u h � 0 ∀ y ∈ H (div , Ω) � � 1 + 1 | 2 ≤ � η 2 ( u h , y , β ) = C 2 F � f + div y � 2 0 +(1 + β ) � y − ∇ u h � 2 | | | u − u h | | 0 β ∀ β > 0 Notation: W = H (div , Ω) Practical implementation: ◮ W h ⊂ W , dim W h < ∞ e.g. Raviart-Thomas elements of degree p : W p h = { w h ∈ H (div , Ω) : w h | K ∈ P p ( K ) ∀ K ∈ T h } ◮ Set values for β and C F ◮ Find y h ∈ W h : (div y h , div w h ) + β ( y h , w h ) = β ( ∇ u h , w h ) − ( f , div w h ) C 2 C 2 F F ∀ w h ∈ W h ◮ Compute η ( u h , y h )

  10. T H E M A T M A I C S f o E T U s e T c Friedrichs’ constant C F I n c T e i l S i b c u N S p f e I o R y m h c e e d C z a c A � v � 0 ≤ C F | | | v | | | ∀ v ∈ V (a) Analytical estimate (Mikhlin, 1986): V = H 1 0 (Ω) � 1 � − 1 / 2 C F ≤ 1 1 | a 1 | + · · · + , Ω ⊂ a 1 × · · · × a d , π | a d |

  11. T H E M A T M A I C S f o E T U e s T c Friedrichs’ constant C F I n c T e l i S i b c u N S p f e I o R y m h c e e d z C a c A � v � 0 ≤ C F | | | v | | | ∀ v ∈ V (b) Numerical upper bound: | 2 � v � 0 | | | v | | C 2 C F = sup ⇔ λ 1 = inf , F = 1 /λ 1 � v � 2 | | | v | | | v ∈ V v ∈ V 0 Eigenvalue problem: u i ∈ V : a ( u i , v ) = λ i ( u i , v ) ∀ v ∈ V ∀ v h ∈ V h Galerkin approxim.: u h i ∈ V h : a ( u h i , v h ) = λ h i ( u h i , v h ) V h ⊂ V | 2 | | | v h | | ⇒ λ h λ 1 ≤ λ h 1 /λ h 1 ≤ C 2 1 = inf ⇒ ⇒ 1 � v h � 2 F v h ∈ V h 0 h h C 2 Sigillito, Kuttler (1970s): λ 1 ≤ λ 1 ⇒ F ≤ 1 /λ 1

  12. T H E M A T M A I C S f o E T U s e T c (B) Dual finite elements I n c T e i l S i b c u N S p f e I o R y m h c e e d C z a c A | | | u − u h | | | ≤ � η ( u h , y ) = � y − ∇ u h � 0 ∀ y ∈ Q ( f ) Q ( f ) = { y ∈ H (div , Ω) : f + div y = 0 } Complementary problem: (i) Find y ∈ Q ( f ) : � η ( u h , y ) ≤ � η ( u h , w ) ∀ w ∈ Q ( f ) 1 2 � y � 2 0 ≤ 1 2 � w � 2 (ii) Find y ∈ Q ( f ) : ∀ w ∈ Q ( f ) 0 ∀ w 0 ∈ Q (0) (iii) Find y ∈ Q ( f ) : ( y , w 0 ) = 0

  13. T H E M A T M A I C S f o E T U s e T c (B) Dual finite elements I n c T e i l S i b c u N S p f e I o R y m h c e e d z C a c A | | | u − u h | | | ≤ � η ( u h , y ) = � y − ∇ u h � 0 ∀ y ∈ Q ( f ) Q ( f ) = { y ∈ H (div , Ω) : f + div y = 0 } Complementary problem: (i) Find y ∈ Q ( f ) : � η ( u h , y ) ≤ � η ( u h , w ) ∀ w ∈ Q ( f ) 1 2 � y � 2 0 ≤ 1 2 � w � 2 (ii) Find y ∈ Q ( f ) : ∀ w ∈ Q ( f ) 0 ∀ w 0 ∈ Q (0) (iii) Find y ∈ Q ( f ) : ( y , w 0 ) = 0 Lemma 1: (i) ⇔ (ii) ⇔ (iii) Proof: (i) ⇔ (ii) � y − ∇ u h � 2 0 ≤ � w − ∇ u h � 2 0 � y � 2 0 − 2( y , ∇ u h ) + �∇ u h � 2 0 ≤ � w � 2 0 − 2( w , ∇ u h ) + �∇ u h � 2 0

  14. T H E M A T M A I C S f o E T U s e T c (B) Dual finite elements I n c T e i l S i b c u N S p f e I o R y m h c e e d z C a c A | | | u − u h | | | ≤ � η ( u h , y ) = � y − ∇ u h � 0 ∀ y ∈ Q ( f ) Q ( f ) = { y ∈ H (div , Ω) : f + div y = 0 } Complementary problem: (i) Find y ∈ Q ( f ) : � η ( u h , y ) ≤ � η ( u h , w ) ∀ w ∈ Q ( f ) 1 2 � y � 2 0 ≤ 1 2 � w � 2 (ii) Find y ∈ Q ( f ) : ∀ w ∈ Q ( f ) 0 ∀ w 0 ∈ Q (0) (iii) Find y ∈ Q ( f ) : ( y , w 0 ) = 0 Lemma 1: (i) ⇔ (ii) ⇔ (iii) Proof: (i) ⇔ (ii) � y − ∇ u h � 2 0 ≤ � w − ∇ u h � 2 0 � y � 2 ≤ � w � 2 0 − 2( y , ∇ u h ) 0 − 2( w , ∇ u h )

  15. T H E M A T M A I C S f o E T U s e T c (B) Dual finite elements I n c T e i l S i b c u N S p f e I o R y m h c e e d z C a c A | | | u − u h | | | ≤ � η ( u h , y ) = � y − ∇ u h � 0 ∀ y ∈ Q ( f ) Q ( f ) = { y ∈ H (div , Ω) : f + div y = 0 } Complementary problem: (i) Find y ∈ Q ( f ) : � η ( u h , y ) ≤ � η ( u h , w ) ∀ w ∈ Q ( f ) 1 2 � y � 2 0 ≤ 1 2 � w � 2 (ii) Find y ∈ Q ( f ) : ∀ w ∈ Q ( f ) 0 ∀ w 0 ∈ Q (0) (iii) Find y ∈ Q ( f ) : ( y , w 0 ) = 0 Lemma 1: (i) ⇔ (ii) ⇔ (iii) Proof: (i) ⇔ (ii) � y − ∇ u h � 2 0 ≤ � w − ∇ u h � 2 0 � y � 2 ≤ � w � 2 0 − 2( f , u h ) 0 − 2( f , u h )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend