a polynomial time partitioning algorithm for weighted
play

A polynomial-time partitioning algorithm for weighted cactus graphs - PowerPoint PPT Presentation

A polynomial-time partitioning algorithm for weighted cactus graphs Maike Buchin, Leonie Selbach Ruhr University Bochum EuroCG 2020 Leonie Selbach 17.3.2020 Motivation & Problem p - ( l, u ) -partition problem Given: Vertex-weighted graph


  1. A polynomial-time partitioning algorithm for weighted cactus graphs Maike Buchin, Leonie Selbach Ruhr University Bochum EuroCG 2020 Leonie Selbach 17.3.2020

  2. Motivation & Problem p - ( l, u ) -partition problem Given: Vertex-weighted graph G = ( V, E, w ) , non-negative integers l and u with l ≤ u , positive integer p Leonie Selbach 17.3.2020

  3. Motivation & Problem p - ( l, u ) -partition problem Given: Vertex-weighted graph G = ( V, E, w ) , non-negative integers l and u with l ≤ u , positive integer p Find a vertex partition into p clusters V 1 , V 2 , . . . , V p such that l ≤ w ( V i ) ≤ u for all 1 ≤ i ≤ p . Leonie Selbach 17.3.2020

  4. Motivation & Problem p - ( l, u ) -partition problem Given: Vertex-weighted graph G = ( V, E, w ) , non-negative integers l and u with l ≤ u , positive integer p connected and pairwise disjoint Find a vertex partition into p clusters V 1 , V 2 , . . . , V p such that l ≤ w ( V i ) ≤ u for all 1 ≤ i ≤ p . Leonie Selbach 17.3.2020

  5. Motivation & Problem p - ( l, u ) -partition problem Given: Vertex-weighted graph G = ( V, E, w ) , non-negative integers l and u with l ≤ u , positive integer p connected and pairwise disjoint Find a vertex partition into p clusters V 1 , V 2 , . . . , V p such that l ≤ w ( V i ) ≤ u for all 1 ≤ i ≤ p . � = w ( v ) v ∈ V i Leonie Selbach 17.3.2020

  6. Motivation & Problem p - ( l, u ) -partition problem Given: Vertex-weighted graph G = ( V, E, w ) , non-negative integers l and u with l ≤ u , positive integer p connected and pairwise disjoint Find a vertex partition into p clusters V 1 , V 2 , . . . , V p such that l ≤ w ( V i ) ≤ u for all 1 ≤ i ≤ p . � = w ( v ) v ∈ V i Motivation Fragmentation of biomedical structures Leonie Selbach 17.3.2020

  7. Motivation & Problem p - ( l, u ) -partition problem Find a ( l, u ) -partition with exactly p clusters. Leonie Selbach 17.3.2020

  8. Motivation & Problem 3 4 2 5 p - ( l, u ) -partition problem 8 7 Find a ( l, u ) -partition with exactly p clusters. 2 1 4 2 3 Leonie Selbach 17.3.2020

  9. Motivation & Problem 3 4 2 5 p - ( l, u ) -partition problem 8 7 Find a ( l, u ) -partition with exactly p clusters. 2 1 4 6 - (3 , 12) -partition 2 3 Leonie Selbach 17.3.2020

  10. Motivation & Problem 3 4 2 5 p - ( l, u ) -partition problem 8 7 Find a ( l, u ) -partition with exactly p clusters. 2 1 4 6 - (3 , 12) -partition 2 3 Minimum/maximum- ( l, u ) -partition problem Find a ( l, u ) -partition with the minimal resp. maximal number of clusters. Leonie Selbach 17.3.2020

  11. Motivation & Problem 3 4 2 5 p - ( l, u ) -partition problem 8 7 Find a ( l, u ) -partition with exactly p clusters. 2 1 4 6 - (3 , 12) -partition 2 3 3 4 Minimum/maximum- ( l, u ) -partition problem 2 5 Find a ( l, u ) -partition with the minimal resp. 8 7 maximal number of clusters. 2 1 4 minimum ( 3 , 12 )-partition 2 3 Leonie Selbach 17.3.2020

  12. (Related) Results Related results • series-parallel graphs NP-hard Leonie Selbach 17.3.2020

  13. (Related) Results Related results • series-parallel graphs NP-hard O ( u 4 p 2 n ) O ( u 4 n ) • partitial k-trees O ( u 2( k +1) p 2 n ) O ( u 2( k +1) n ) p - ( l, u ) -partition problem min/max- ( l, u ) -partition problem Leonie Selbach 17.3.2020

  14. (Related) Results Related results • series-parallel graphs NP-hard O ( u 4 p 2 n ) O ( u 4 n ) • partitial k-trees O ( u 2( k +1) p 2 n ) O ( u 2( k +1) n ) • trees polynomial (Decision) O ( p 4 n ) O ( n 5 ) p - ( l, u ) -partition problem min/max- ( l, u ) -partition problem Leonie Selbach 17.3.2020

  15. (Related) Results Related results • series-parallel graphs NP-hard O ( u 4 p 2 n ) O ( u 4 n ) • partitial k-trees O ( u 2( k +1) p 2 n ) O ( u 2( k +1) n ) • trees polynomial (Decision) O ( p 4 n ) O ( n 5 ) p - ( l, u ) -partition problem min/max- ( l, u ) -partition problem Our results • cactus graphs polynomial O ( p 4 n 2 ) O ( n 6 ) Leonie Selbach 17.3.2020

  16. (Related) Results Related results • series-parallel graphs NP-hard O ( u 4 p 2 n ) O ( u 4 n ) • partitial k-trees O ( u 2( k +1) p 2 n ) O ( u 2( k +1) n ) • trees polynomial (Decision & computation) O ( p 4 n ) O ( n 5 ) p - ( l, u ) -partition problem min/max- ( l, u ) -partition problem Our results • cactus graphs polynomial (Decision & Computation) O ( p 4 n 2 ) O ( n 6 ) Leonie Selbach 17.3.2020

  17. Preprocessing DFS on some vertex r ∈ G and store cycles Leonie Selbach 17.3.2020

  18. Preprocessing DFS on some vertex r ∈ G and store cycles r Leonie Selbach 17.3.2020

  19. Preprocessing DFS on some vertex r ∈ G and store cycles r Leonie Selbach 17.3.2020

  20. Preprocessing DFS on some vertex r ∈ G and store cycles r Leonie Selbach 17.3.2020

  21. Preprocessing DFS on some vertex r ∈ G and store cycles r Leonie Selbach 17.3.2020

  22. Preprocessing DFS on some vertex r ∈ G and store cycles r z x r y y z x Leonie Selbach 17.3.2020

  23. Preprocessing DFS on some vertex r ∈ G and store cycles start node r z x r end node y y z x C ( r, z ) = � r, x, y, z � Leonie Selbach 17.3.2020

  24. Some Definitions For a partition P of T v : | P | = number of clusters in P C v = cluster containing the node v Leonie Selbach 17.3.2020

  25. Some Definitions subtree rooted in node v For a partition P of T v : | P | = number of clusters in P C v = cluster containing the node v Leonie Selbach 17.3.2020

  26. Some Definitions subtree rooted in node v For a partition P of T v : | P | = number of clusters in P C v = cluster containing the node v Extendable ( l, u ) -partition of T v : • w ( C v ) ≤ u • l ≤ w ( C ′ ) ≤ u for every cluster C ′ � = C v Leonie Selbach 17.3.2020

  27. Some Definitions Partition Sets S ( T v ) = { ( x, k ) | ∃ extendable ( l, u ) -partition P of T v such that | P | = k ∧ w ( C v ) = x } Leonie Selbach 17.3.2020

  28. Some Definitions Partition Sets S ( T v ) = { ( x, k ) | ∃ extendable ( l, u ) -partition P of T v such that | P | = k ∧ w ( C v ) = x } | S ( T v ) | = O ( up ) Leonie Selbach 17.3.2020

  29. Some Definitions Partition Sets S ( T v ) = { ( x, k ) | ∃ extendable ( l, u ) -partition P of T v such that | P | = k ∧ w ( C v ) = x } Lemma T v has p - ( l, u ) -partition ⇔ ∃ ( x, p ) ∈ S ( T v ) such that l ≤ x ≤ u Leonie Selbach 17.3.2020

  30. Some Definitions Partition Sets S ( T v ) = { ( x, k ) | ∃ extendable ( l, u ) -partition P of T v such that | P | = k ∧ w ( C v ) = x } Lemma T v has p - ( l, u ) -partition ⇔ ∃ ( x, p ) ∈ S ( T v ) such that l ≤ x ≤ u Idea Compute S ( T r ) for r being the root of the DFS-Tree Leonie Selbach 17.3.2020

  31. Some Definitions Partition Sets S ( T v ) = { ( x, k ) | ∃ extendable ( l, u ) -partition P of T v such that | P | = k ∧ w ( C v ) = x } Lemma T v has p - ( l, u ) -partition ⇔ ∃ ( x, p ) ∈ S ( T v ) such that l ≤ x ≤ u Idea Compute S ( T r ) for r being the root of the DFS-Tree include an efficient procedure for the cycles Leonie Selbach 17.3.2020

  32. Method Compute partition P of T i v by combining partitions of T i − 1 and T v i v T i v v v v 1 v 1 v i − 1 v i − 1 v i v i Leonie Selbach 17.3.2020

  33. Method Compute partition P of T i v by combining partitions of T i − 1 and T v i v v v T i − 1 v v 1 v 1 v i − 1 v i − 1 v i v i Leonie Selbach 17.3.2020

  34. Method Compute partition P of T i v by combining partitions of T i − 1 and T v i v v T i − 1 v v i Leonie Selbach 17.3.2020

  35. Method Compute partition P of T i v by combining partitions of T i − 1 and T v i v v T i − 1 v v i T v i Leonie Selbach 17.3.2020

  36. Method Compute partition P of T i v by combining partitions of T i − 1 and T v i v Given partitions P ′ of T i − 1 v v and P ′′ of T v i . C ′ v v i ′′ C v i Leonie Selbach 17.3.2020

  37. Method Compute partition P of T i v by combining partitions of T i − 1 and T v i v Given partitions P ′ of T i − 1 v v and P ′′ of T v i . C ′ v as ( x 1 , k 1 ) ∈ S ( T i − 1 ) and v v i ′′ ( x 2 , k 2 ) ∈ S ( T v i ) C v i Leonie Selbach 17.3.2020

  38. Method Compute partition P of T i v by combining partitions of T i − 1 and T v i v Option 1: merge v w ( C v ) = w ( C ′ v ) + w ( C ′′ v i ) C v | P | = | P ′ | + | P ′′ | − 1 v i ( x 1 + x 2 , k 1 + k 2 − 1) ∈ S ( T i v ) if x 1 + x 2 ≤ u and k 1 + k 2 − 1 ≤ p Leonie Selbach 17.3.2020

  39. Method Compute partition P of T i v by combining partitions of T i − 1 and T v i v Option 2: don’t merge v w ( C v ) = w ( C ′ v ) C v | P | = | P ′ | + | P ′′ | v i ( x 1 , k 1 + k 2 ) ∈ S ( T i v ) if x 2 ≥ l and k 1 + k 2 ≤ p Leonie Selbach 17.3.2020

  40. Method Compute partition P of T i v by combining partitions of T i − 1 and T v i v Leonie Selbach 17.3.2020

  41. Method Compute partition P of T i v by combining partitions of T i − 1 and T v i v Compute set S ( T i v ) by combining sets S ( T i − 1 ) and S ( T v i ) v Leonie Selbach 17.3.2020

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend