a monotonicity theorem for two dimensional boundaries and
play

A Monotonicity Theorem for Two-dimensional Boundaries and Defects - PowerPoint PPT Presentation

A Monotonicity Theorem for Two-dimensional Boundaries and Defects Andy OBannon University of Oxford February 25, 2016 Based on 1509.02160 with Kristan Jensen (Stony Brook San Francisco State) Outline: Review: Monotonicity


  1. The g-theorem Put fixed point BCFT on a hemisphere g α ≡ Z ren. α “Boundary entropy” ln g α Counts DOF localized at boundary

  2. The g-theorem Thermodynamic entropy Affleck and Ludwig PRL 67 (1991) 161 System size L Temperature T T � 1 /L S thermo = π 3 cLT + ln g α + . . .

  3. The g-theorem Entanglement Entropy (EE) Calabrese + Cardy hep-th/0405152 Interval including the boundary S EE = c 6 ln 2 ` a + ln g α + . . . − 1 ln g α = S BCFT 2 S CFT EE EE

  4. The g-theorem Affleck and Ludwig PRL 67 (1991) 161 Friedan and Konechny hep-th/0312197 Define a thermodynamic g-function S thermo = π 3 cLT + S ∂ ( T ) Euclidean symmetry, locality, reflection positivity ∂ S ∂ ⇒ ∂ T ≥ 0 g UV ≥ g IR Strong form Weak form

  5. Generalizations? Higher-dimensional g-theorems? Proposals Yamaguchi hep-th/0207171 Takayanagi et al. 1105.5165, 1108.5152, 1205.1573 Estes, Jensen, O’B., Tsatis, Wrase 1403.6475 Gaiotto 1403.8052 Many tests in particular examples No proofs until now!

  6. GOAL Prove a g-theorem for Local, reflection-positive BCFT in d = 3 Proposals Nozaki, Takayanagi, Ugajin 1205.1573 Estes, Jensen, O’B., Tsatis, Wrase 1403.6475 Trace Anomaly Matching Schwimmer and Theisen 1011.0696 Komargodski and Schwimmer 1107.3987 Komargodski 1112.4538

  7. Examples Graphene with a boundary Critical Ising model in with a boundary d = 3 M-theory: M2-branes with a boundary String theory: various brane intersections Holographic BCFTs

  8. Outline: • Review: Monotonicity Theorems • The Systems • The Trace Anomaly • The Proof • Summary and Outlook

  9. The Systems BCFT in d = 3 With a planar boundary y z x = 0 x

  10. The Systems SO ( d + 1 , 1) = SO (4 , 1) x µ → Λ µ Rotations ν x ν x µ → x µ + c µ Translations x µ → λ x µ Dilatations x µ + b µ x 2 Special Conformal x µ → 1 + 2 x ν b ν + b 2 x 2 Broken to subgroup that preserves x = 0

  11. The Systems x µ → Λ µ Rotations ν x ν Broken to rotations in ( y, z ) y z x = 0 x

  12. The Systems x µ → x µ + c µ Translations Broken to translations along ( y, z ) y z x = 0 x

  13. The Systems x µ → λ x µ Dilatations Unbroken y z x = 0 x

  14. The Systems x µ + b µ x 2 Special Conformal x µ → 1 + 2 x ν b ν + b 2 x 2 b x = 0 Broken to y z x = 0 x

  15. The Systems SO ( d + 1 , 1) → SO ( d, 1) SO (4 , 1) → SO (3 , 1) NOT the full conformal group d = 2 y z x = 0 x

  16. The Systems Boundary RG Flows Z S ( λ ) UV BCFT → S ( λ ) UV dx dy dz δ ( x ) λ O O ( y, z ) BCFT + scalar with O ∆ O < 2 T µ ν = [ T µ ν ] bulk + δ ( x ) [ T µ ν ] ∂ Invariance under diffeomorphisms along the boundary [ T µx ] ∂ = [ T xµ ] ∂ = [ T xx ] ∂ = 0 ∂ µ [ T µ ν ] ∂ ∝ [ T xx ] bulk

  17. The Systems Boundary RG Flows Z S ( λ ) UV BCFT → S ( λ ) UV dx dy dz δ ( x ) λ O O ( y, z ) BCFT + scalar with O ∆ O < 2 T µ ν = [ T µ ν ] bulk + δ ( x ) [ T µ ν ] ∂ Bulk theory remains conformal ⇥ ⇤ ⇥ ⇤ T µ = δ ( x ) ∂ 6 = 0 T µ T µ bulk = 0 µ µ µ

  18. UV BCFT UV Single free, massless, real scalar Neumann B.C. Boundary RG Flow Z S UV BCFT → S UV d 3 x � ( x ) m 2 Φ 2 ( ~ x ) BCFT + ∆ Φ 2 = 1 IR BCFT Single free, massless, real scalar IR Dirichlet B.C.

  19. The Systems Boundary RG Flows Z S ( λ ) UV BCFT → S ( λ ) UV dx dy dz δ ( x ) λ O O ( y, z ) BCFT + Trace Anomaly Matching Schwimmer and Theisen 1011.0696 Komargodski and Schwimmer 1107.3987 Komargodski 1112.4538 Reflection Positivity Weak form

  20. Outline: • Review: Monotonicity Theorems • The Systems • The Trace Anomaly • The Proof • Summary and Outlook

  21. Trace Anomaly CFT in any d g µ ν = δ µ ν Conformal invariance T µ = 0 µ

  22. Trace Anomaly CFT in any d Non-trivial g µ ν Quantum Effects Break Conformal Invariance T µ µ 6 = 0

  23. Trace Anomaly What is the general form of ? T µ µ Step #1 Write down all curvature invariants built from g µ ν with the correct dimension d = 4 = c 1 R µ νρσ R µ νρσ + c 2 R µ ν R µ ν + c 3 R 2 + . . . T µ µ

  24. Trace Anomaly What is the general form of ? T µ µ Step #2 Wess-Zumino consistency g µ ν → e 2 Ω 1 e 2 Ω 2 g µ ν g µ ν → e 2 Ω 2 e 2 Ω 1 g µ ν = Fixes some coefficients = c 1 R µ νρσ R µ νρσ + c 2 R µ ν R µ ν + c 3 R 2 + . . . T µ µ

  25. Trace Anomaly What is the general form of ? T µ µ Step #3 Add local counterterms to S ( g µ ν , λ ) Determine how they enter T µ µ Fixes more coefficients = c 1 R µ νρσ R µ νρσ + c 2 R µ ν R µ ν + c 3 R 2 + . . . T µ µ

  26. Trace Anomaly CFT in any d T µ = 0 d odd µ T µ 6 = 0 d even µ c T µ = 24 π R d = 2 µ

  27. Trace Anomaly d = 4 T µ = a E − c W µ νρσ W µ νρσ µ Euler density E = R µ νρσ R µ νρσ − 4 R µ ν R µ ν + R 2 Weyl tensor W µ νρσ central charges and c a

  28. Trace Anomaly g µ ν ( x ) → e 2 Ω ( x ) g µ ν ( x ) Z µ is invariant d d x √ g T µ T µ = a E − c W µ νρσ W µ νρσ µ Type A Type B √ g W 2 √ g E Changes by a total derivative Invariant

  29. Trace Anomaly BCFT in d = 3 ⇥ ⇤ ⇥ ⇤ µ = bulk + δ ( x ) T µ T µ T µ µ µ ∂ ⇥ ⇤ T µ bulk = 0 µ ⇥ ⇤ What is the general form of ? T µ µ ∂

  30. Geometry of Submanifolds σ 1 , σ 2 “worldsheet” “target space” x µ Embedding x µ ( σ a ) Induced metric ∂ x µ ∂ x ν g ab = g µ ν ˆ ∂σ a ∂σ b ˆ ˆ ˆ R abcd R ab R

  31. Geometry of Submanifolds Extrinsic Curvature “Second Fundamental Form” Gaussian Normal Coordinates g µ ν dx µ dx ν = dx 2 + ˆ g ab ( x, σ a ) d σ a d σ b K ab = 1 2 ∂ x ˆ g ab ( x, σ ) Mean curvature g ab K ab K ≡ ˆ

  32. Trace Anomaly ⇥ ⇤ What is the general form of ? T µ µ ∂ Schwimmer + Theisen 0802.1017 See also: Berenstein, Corrado, Fischler, Maldacena hep-th/9809188 Graham + Witten hep-th/9901021 Henningson + Skenderis hep-th/9905163 Gustavsson hep-th/0310037, 0404150 Asnin 0801.1469

  33. Trace Anomaly R + c 2 ( K ab K ab − 1 ∂ = c 1 ˆ T µ 2 K 2 ) ⇥ ⇤ µ Boundary “central charges” and c 1 c 2

  34. Trace Anomaly g µ ν → e 2 Ω g µ ν R + c 2 ( K ab K ab − 1 ∂ = c 1 ˆ T µ 2 K 2 ) ⇥ ⇤ µ Type A Type B g ( K ab K ab − 1 h i p p g ˆ ˆ R � 2 r 2 Ω p 2 K 2 ) R ! g ˆ ˆ ˆ Changes by a total derivative Invariant

  35. Trace Anomaly R + c 2 ( K ab K ab − 1 ∂ = c 1 ˆ T µ 2 K 2 ) ⇥ ⇤ µ g ( K ab K ab − 1 Z p 2 K 2 ) d 2 σ ˆ “Rigid String” Action Physics Polyakov, NPB 268 (1986) 406 Mathematics Willmore functional

  36. Trace Anomaly GOAL R + c 2 ( K ab K ab − 1 ∂ = c 1 ˆ T µ 2 K 2 ) ⇥ ⇤ µ Boundary RG Flow c UV ≥ c IR 1 1 Nozaki, Takayanagi, Ugajin 1205.1573 Estes, Jensen, O’B., Tsatis, Wrase 1403.6475

  37. Trace Anomaly GOAL R + c 2 ( K ab K ab − 1 ∂ = c 1 ˆ T µ 2 K 2 ) ⇥ ⇤ µ ∂ µ [ T µ ν ] ∂ ∝ [ T xx ] bulk We can’t just copy Zamolodchikov’s proof!

  38. Trace Anomaly GOAL R + c 2 ( K ab K ab − 1 ∂ = c 1 ˆ T µ 2 K 2 ) ⇥ ⇤ µ Trace Anomaly Matching Schwimmer and Theisen 1011.0696 Komargodski and Schwimmer 1107.3987 Komargodski 1112.4538 Reflection Positivity Weak form

  39. Outline: • Review: Monotonicity Theorems • The Systems • The Trace Anomaly • The Proof • Summary and Outlook

  40. The Proof UV Trace Anomaly Matching Schwimmer and Theisen 1011.0696 Komargodski and Schwimmer 1107.3987 Komargodski 1112.4538 local, reflection-positive QFT in any d RG flow between fixed point CFTs IR

  41. Dilaton Non-dynamical background metric g µ ν ( x ) Non-dynamical background scalar τ ( x ) g µ ν → e 2 Ω g µ ν τ → τ + Ω

  42. Dilaton Non-dynamical background metric g µ ν ( x ) Non-dynamical background scalar τ ( x ) λ O O ( x ) → e ( ∆ O − d ) τ ( x ) λ O O ( x )

  43. Dilaton Non-dynamical background metric g µ ν ( x ) Non-dynamical background scalar τ ( x ) Z S ( λ ) τ = d d x √ g L ( � , ~ x ) τ Z h i d d x √ g T µ τ =0 + O ( ⌧ 2 ) ⇥ ⇤ L ( � , ~ x ) τ =0 + ⌧ = µ

  44. Dilaton Non-dynamical background metric g µ ν ( x ) Non-dynamical background scalar τ ( x ) Trace Anomaly Matching d even

  45. Dilaton Integrate out massive DOF Obtain effective action S e ff ≡ − ln Z Regular and local in τ Expand in τ S e ff = S τ =0 + S τ e ff e ff

  46. Dilaton g µ ν → e 2 Ω g µ ν τ → τ + Ω δ S e ff δ Ω = − δ δ Ω ln Z Expand in τ δ S e ff τ =0 + δ S τ δ Ω = −√ g e ff ⇥ ⇤ T µ µ δ Ω

  47. δ S e ff UV ⇤ UV ⇥ T µ δ Ω = − τ =0 = 0 µ g µ ν = δ µ ν τ = 0 δ S e ff ⇥ ⇤ δ Ω = � T µ τ =0 6 = 0 µ δ S e ff ⇤ IR ⇥ IR T µ δ Ω = − τ =0 = 0 µ

  48. δ S e ff UV ⇤ UV ⇥ T µ δ Ω = − τ =0 = 0 µ g µ ν = δ µ ν τ 6 = 0 δ S e ff τ =0 + δ S τ e ff ⇥ ⇤ T µ δ Ω = − δ Ω = 0 µ δ S e ff ⇤ IR ⇥ IR T µ δ Ω = − τ =0 = 0 µ

  49. δ Ω = �p g δ S e ff UV ⇤ UV ⇥ T µ τ =0 6 = 0 µ g µ ν 6 = δ µ ν τ = 0 ⇤ UV ⇤ IR ⇥ ⇥ T µ T µ τ =0 6 = µ µ τ =0 δ Ω = �p g δ S e ff ⇤ IR ⇥ IR T µ τ =0 6 = 0 µ

  50. δ Ω = �p g δ S e ff UV ⇤ UV ⇥ T µ τ =0 6 = 0 µ g µ ν 6 = δ µ ν τ 6 = 0 δ Ω = �p g δ Ω = �p g δ S e ff τ =0 + δ S τ ⇤ UV e ff ⇥ ⇤ ⇥ T µ T µ τ =0 6 = 0 µ µ δ Ω = �p g δ Ω = �p g δ S e ff τ =0 + δ S τ IR ⇤ IR ⇤ UV e ff ⇥ ⇥ T µ T µ τ =0 6 = 0 µ µ

  51. Dilaton Trace Anomaly Matching Schwimmer and Theisen 1011.0696 At the IR fixed point, must produce S τ e ff δ S τ h⇥ i ⇤ UV ⇤ IR δ Ω = −√ g e ff ⇥ T µ T µ τ =0 − µ µ τ =0

  52. Dilaton Boundary RG Flow Z S UV BCFT → S UV dx dy dz δ ( x ) λ O O ( y, z ) BCFT + λ O O ( y, z ) → e ( ∆ O − 2) τ ( y,z ) λ O O ( y, z ) τ is localized at the boundary, and depends only on boundary coordinates!

  53. ( K ab K ab − 1 UV ⇤ UV ˆ T µ = c UV R + c UV 2 K 2 ) ⇥ µ 1 2 ∂ ⇥ ⇤ ⇥ ⇤ µ = bulk + δ ( x ) T µ T µ T µ µ µ ∂ Boundary RG Flow Z S UV BCFT → S UV dx dy dz δ ( x ) λ O O ( y, z ) BCFT + ⇥ ⇤ T µ bulk = 0 µ 2 ( K ab K ab − 1 IR ⇤ IR ˆ T µ ∂ = c IR R + c IR 2 K 2 ) ⇥ µ 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend