a modular supercongruence for 6 f 5 an ap ery like story
play

A modular supercongruence for 6 F 5 : An Ap ery-like story - PowerPoint PPT Presentation

A modular supercongruence for 6 F 5 : An Ap ery-like story Palmetto Number Theory Series (PANTS XXVIII) University of Tennessee Armin Straub September 17, 2017 University of South Alabama 1 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1


  1. A modular supercongruence for 6 F 5 : An Ap´ ery-like story Palmetto Number Theory Series (PANTS XXVIII) University of Tennessee Armin Straub September 17, 2017 University of South Alabama ˆ 1 ˇ ˙ ˇ 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 ˇ ” b p p q p mod p 3 q 2 6 F 5 ˇ 1 1 , 1 , 1 , 1 , 1 p ´ 1 Joint work with: Robert Osburn Wadim Zudilin (University College Dublin) (University of Newcastle/ Radboud Universiteit) A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 1 / 15

  2. Ap´ ery numbers and the irrationality of ζ p 3 q • The Ap´ ery numbers 1 , 5 , 73 , 1445 , . . . ˆ n ˙ 2 ˆ n ` k ˙ 2 n ÿ A p n q “ k k satisfy k “ 0 p n ` 1 q 3 A p n ` 1 q “ p 2 n ` 1 qp 17 n 2 ` 17 n ` 5 q A p n q ´ n 3 A p n ´ 1 q . A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 2 / 15

  3. Ap´ ery numbers and the irrationality of ζ p 3 q • The Ap´ ery numbers 1 , 5 , 73 , 1445 , . . . ˆ n ˙ 2 ˆ n ` k ˙ 2 n ÿ A p n q “ k k satisfy k “ 0 p n ` 1 q 3 A p n ` 1 q “ p 2 n ` 1 qp 17 n 2 ` 17 n ` 5 q A p n q ´ n 3 A p n ´ 1 q . ζ p 3 q “ ř 8 1 THM n 3 is irrational. n “ 1 Ap´ ery ’78 The same recurrence is satisfied by the “near”-integers proof ˙ 2 ˜ n ¸ ˆ n ˙ 2 ˆ n ` k n k ÿ ÿ ÿ p´ 1 q m ´ 1 1 2 m 3 ` n ˘` n ` m ˘ B p n q “ j 3 ` . k k m “ 1 k “ 0 j “ 1 m m Then, B p n q A p n q Ñ ζ p 3 q . But too fast for ζ p 3 q to be rational. A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 2 / 15

  4. Hypergeometric series Trivially, the Ap´ ery numbers have the representation EG ˆ n ˙ 2 ˆ n ` k ˙ 2 ÿ n A p n q “ k k k “ 0 ˆ ´ n, ´ n, n ` 1 , n ` 1 ˇ ˙ ˇ ˇ “ 4 F 3 ˇ 1 . 1 , 1 , 1 • Here, 4 F 3 is a hypergeometric series: ˆ a 1 , . . . , a p ˇ ˙ 8 ÿ ˇ z n p a 1 q k ¨ ¨ ¨ p a p q k ˇ p F q ˇ z “ n ! . p b 1 q k ¨ ¨ ¨ p b q q k b 1 , . . . , b q k “ 0 A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 3 / 15

  5. Hypergeometric series Trivially, the Ap´ ery numbers have the representation EG ˆ n ˙ 2 ˆ n ` k ˙ 2 ÿ n A p n q “ k k k “ 0 ˆ ´ n, ´ n, n ` 1 , n ` 1 ˇ ˙ ˇ ˇ “ 4 F 3 ˇ 1 . 1 , 1 , 1 • Here, 4 F 3 is a hypergeometric series: ˆ a 1 , . . . , a p ˇ ˙ 8 ÿ ˇ z n p a 1 q k ¨ ¨ ¨ p a p q k ˇ p F q ˇ z “ n ! . p b 1 q k ¨ ¨ ¨ p b q q k b 1 , . . . , b q k “ 0 • Similary, we have the truncated hypergeometric series ˆ a 1 , . . . , a p ˇ ˙ ÿ M ˇ z n p a 1 q k ¨ ¨ ¨ p a p q k ˇ p F q ˇ z “ n ! . p b 1 q k ¨ ¨ ¨ p b q q k b 1 , . . . , b q M k “ 0 A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 3 / 15

  6. A first connection to modular forms • The Ap´ ery numbers A p n q satisfy 1 , 5 , 73 , 1145 , . . . ˆ η 12 p τ q η 12 p 6 τ q ˙ n ÿ η 7 p 2 τ q η 7 p 3 τ q “ A p n q . η 5 p τ q η 5 p 6 τ q η 12 p 2 τ q η 12 p 3 τ q n ě 0 modular form modular function 1 ` 5 q ` 13 q 2 ` 23 q 3 ` O p q 4 q q ´ 12 q 2 ` 66 q 3 ` O p q 4 q q “ e 2 πiτ A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 4 / 15

  7. A first connection to modular forms • The Ap´ ery numbers A p n q satisfy 1 , 5 , 73 , 1145 , . . . ˆ η 12 p τ q η 12 p 6 τ q ˙ n ÿ η 7 p 2 τ q η 7 p 3 τ q “ A p n q . η 5 p τ q η 5 p 6 τ q η 12 p 2 τ q η 12 p 3 τ q n ě 0 modular form modular function 1 ` 5 q ` 13 q 2 ` 23 q 3 ` O p q 4 q q ´ 12 q 2 ` 66 q 3 ` O p q 4 q q “ e 2 πiτ ? EG As a consequence, with z “ 1 ´ 34 x ` x 2 , ˆ 1 ˇ ˙ ÿ 2 , 1 2 , 1 ˇ 17 ´ x ´ z 1024 x A p n q x n “ ˇ ? 2 2 p 1 ` x ` z q 3 { 2 3 F 2 ˇ ´ . p 1 ´ x ` z q 4 1 , 1 4 n ě 0 For contrast, the Ap´ ery numbers are the diagonal coefficients of EG S 2014 1 . p 1 ´ x 1 ´ x 2 qp 1 ´ x 3 ´ x 4 q ´ x 1 x 2 x 3 x 4 A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 4 / 15

  8. A second connection to modular forms For primes p ą 2 , the Ap´ ery numbers satisfy THM Ahlgren– ˆ p ´ 1 ˙ Ono ’00 p mod p 2 q A ” a p p q 2 where a p n q are the Fourier coefficients of the Hecke eigenform 8 ÿ η p 2 τ q 4 η p 4 τ q 4 “ a p n q q n n “ 1 of weight 4 for the modular group Γ 0 p 8 q . • conjectured by Beukers ’87, and proved modulo p • similar congruences modulo p for other Ap´ ery-like numbers • by the Deligne–Weil bounds, | a p p q| ă 2 p 3 { 2 , the congruence determines the modular form A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 5 / 15

  9. The “super” in these congruences Fourier coefficients a p p q Ap´ ery sequence A p n q A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 6 / 15

  10. The “super” in these congruences Fourier coefficients a p p q Œ point counts on modular curves modulo p Œ character sums Œ Gaussian hypergeometric series Œ harmonic sums Œ truncated hypergeometric series Œ Ap´ ery sequence A p n q A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 6 / 15

  11. The “super” in these congruences Fourier coefficients a p p q Œ point counts on modular curves modulo p Œ equalities character sums Œ Gaussian hypergeometric series Œ harmonic sums “easy” mod p Œ truncated hypergeometric series Œ Ap´ ery sequence A p n q A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 6 / 15

  12. Kilbourn’s extension of the Ahlgren–Ono supercongruence ˆ 1 ˇ ˙ THM 2 , 1 2 , 1 2 , 1 ˇ ˇ p mod p 3 q , Kilbourn 2 ” a p p q 4 F 3 ˇ 1 2006 1 , 1 , 1 p ´ 1 for primes p ą 2 . Again, a p n q are the Fourier coefficients of 8 ÿ η p 2 τ q 4 η p 4 τ q 4 “ a p n q q n . n “ 1 A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 7 / 15

  13. Kilbourn’s extension of the Ahlgren–Ono supercongruence ˆ 1 ˇ ˙ THM 2 , 1 2 , 1 2 , 1 ˇ ˇ p mod p 3 q , Kilbourn 2 ” a p p q 4 F 3 ˇ 1 2006 1 , 1 , 1 p ´ 1 for primes p ą 2 . Again, a p n q are the Fourier coefficients of 8 ÿ η p 2 τ q 4 η p 4 τ q 4 “ a p n q q n . n “ 1 • This result proved the first of 14 related supercongruences conjectured by Rodriguez-Villegas (2001) between • truncated hypergeometric series 4 F 3 and • Fourier coefficients of modular forms of weight 4 . • Despite considerable progress, 11 of these remain open. McCarthy (2010), Fuselier–McCarthy (2016) prove one each; McCarthy (2010) proves “half” of each of the 14. 2017/5/4 : Preprint by Long–Tu–Yui–Zudilin proving all 14 congruences. • The 14 supercongruence conjectures were complemented with 4 ` 4 conjectures for 2 F 1 and 3 F 2 . A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 7 / 15

  14. A supercongruence for 6 F 5 ˆ 1 ˇ ˙ THM 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 ˇ ˇ p mod p 3 q , 2 OSZ 6 F 5 ˇ 1 ” b p p q 2017 1 , 1 , 1 , 1 , 1 p ´ 1 for primes p ą 2 . Here, b p n q are the Fourier coefficients of ÿ 8 η p τ q 8 η p 4 τ q 4 ` 8 η p 4 τ q 12 “ b p n q q n , n “ 1 the unique newform in S 6 p Γ 0 p 8 qq . • Conjectured by Mortenson based on numerical evidence, which further suggests it holds modulo p 5 . A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 8 / 15

  15. A supercongruence for 6 F 5 ˆ 1 ˇ ˙ THM 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 ˇ ˇ p mod p 3 q , 2 OSZ 6 F 5 ˇ 1 ” b p p q 2017 1 , 1 , 1 , 1 , 1 p ´ 1 for primes p ą 2 . Here, b p n q are the Fourier coefficients of ÿ 8 η p τ q 8 η p 4 τ q 4 ` 8 η p 4 τ q 12 “ b p n q q n , n “ 1 the unique newform in S 6 p Γ 0 p 8 qq . • Conjectured by Mortenson based on numerical evidence, which further suggests it holds modulo p 5 . • A result of Frechette, Ono and Papanikolas expresses the b p p q in terms of Gaussian hypergeometric functions. • Osburn and Schneider determined the resulting Gaussian hypergeometric functions modulo p 3 in terms of sums involving harmonic sums. A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 8 / 15

  16. A brief impression of the available ingredients THM In terms of Gaussian hypergeometric series, b p p q “ ´ p 56 F 5 p 1 q ` p 44 F 3 p 1 q ` p 32 F 1 p 1 q ` p 2 . • Conjectured by Koike; proven by Frechette, Ono and Papanikolas (2004). • Here, φ p is the quadratic character mod p , ǫ p the trivial character, and ˇ ˆ ˙ ˇ φ p , φ p , . . . , φ p ˇ n ` 1 F n p x q “ n ` 1 F n ˇ x , ǫ p , . . . , ǫ p p the finite field version of ˆ 1 ˇ ˙ ˇ 2 , 1 2 , . . . , 1 ˇ n ` 1 F n 2 ˇ x . 1 , . . . , 1 A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 9 / 15

  17. A brief impression of the available ingredients THM In terms of Gaussian hypergeometric series, b p p q “ ´ p 56 F 5 p 1 q ` p 44 F 3 p 1 q ` p 32 F 1 p 1 q ` p 2 . • Conjectured by Koike; proven by Frechette, Ono and Papanikolas (2004). • Here, φ p is the quadratic character mod p , ǫ p the trivial character, and ˇ ˆ ˙ ˇ φ p , φ p , . . . , φ p ˇ n ` 1 F n p x q “ n ` 1 F n ˇ x , ǫ p , . . . , ǫ p p the finite field version of ˆ 1 ˇ ˙ ˇ 2 , 1 2 , . . . , 1 ˇ n ` 1 F n 2 ˇ x . 1 , . . . , 1 • Since p nn ` 1 F n p x q P Z , it follows easily that ˆ 1 ˇ ˙ ˇ 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 ˇ b p p q ” ´ p 5 6 F 5 p 1 q ” 6 F 5 2 p mod p q . ˇ 1 1 , 1 , 1 , 1 , 1 p ´ 1 A modular supercongruence for 6 F 5 : An Ap´ ery-like story Armin Straub 9 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend