a highly integrated 65 nm soc process with enhanced power
play

A Highly Integrated 65-nm SoC Process with Enhanced - PowerPoint PPT Presentation

A Highly Integrated 65-nm SoC Process with Enhanced Power/Performance of Digital and Analog Circuits L. T. Clark, D. Zhao, T. Bakhishev, H. Ahn, E. Boling, M. Duane, K. Fujita*, P. Gregory, T. Hoffmann, M. Hori*, D. Kanai*, D. Kidd, S. Lee, Y.


  1. A Highly Integrated 65-nm SoC Process with Enhanced Power/Performance of Digital and Analog Circuits L. T. Clark, D. Zhao, T. Bakhishev, H. Ahn, E. Boling, M. Duane, K. Fujita*, P. Gregory, T. Hoffmann, M. Hori*, D. Kanai*, D. Kidd, S. Lee, Y. Liu, J. Mitani*, J. Nagayama*, S. Pradhan, P. Ranade, R. Rogenmoser, L. Scudder, L. Shifren, Y. Torii*, M. Wojko, Y. Asada*, T. Ema*, and S. Thompson SuVolta, Inc. *Fujitsu Semiconductor Ltd 1

  2. Presentation Outline • Low-power SoC platform • Process and device results • Circuit results – SRAM V DDmin reduction – Digital logic power reduction – Analog matching and performance • Conclusions 2

  3. Low-Power SoC Platform Transistor level benefits Higher drive current • ARM M-0 Tighter V T control 200MHz @ 0.6V • Seamless integration to baseline • - V DDmin ~400mV - Lower I SB - 4X R out Product level benefits - 2x better AVT V DD reduction from 1.2V to 0.9V • Nearly half power and matched delay – Extended voltage range • Improved low voltage yield – • Significantly extends 65/55-nm node life with enhanced functionality • Lower cost alternative to 40-nm migration 3

  4. Presentation Outline • Low-power SoC platform • Process and device results • Circuit results – SRAM V DDmin reduction – Digital logic power reduction – Analog matching and performance • Conclusions 4

  5. Deeply Depleted Channel (DDC) • 65-nm example transistor • Seamless integration into baseline process • Legacy devices supported – Legacy IP support possible 5

  6. DDC Matching Benefits • Improved transistor matching – Un-doped channel • Better RDF – Epitaxial channel formed after wells • No well proximity effects – Excellent V T Control – No halo implants • Further improves RDF • No halo proximity effects • Epi layer thickness control – Wafer: 1 σ = 0.25% – Overall 1 σ = 0.65% 26.9 Thickness (nm) 27.3 6

  7. DDC I EFF Increase 60 • Better SCE – Thinner t OX 50 DDC I EFF gain (%) – DIBL reduced 40 ~50mV/V – Higher low V DD 30 mobility 20 • I EFF w/ same 10 – L E – I OFF 0 0.6 0.7 0.8 0.9 1.0 1.1 1.2 V DD (V) 7

  8. Threshold Voltage Control • Enables better systematic corners Logic Device SRAM 0.70 Control Control 0.65 0.50 NMOS V T (V) NMOS V T (V) 3 σ 0.60 1 σ 2 σ 0.45 0.55 0.50 0.40 DDC DDC 0.45 -0.50 -0.45 -0.40 -0.35 0.3 0.4 0.5 0.6 0.7 PMOS V T (V) PMOS V T (V) 8

  9. SRAM Transistor Matching • Better SRAM matching: Lower SRAM V DDmin • DDC σ σ σ σ ∆ V T invariant across V T range 50 50 40 40 0.5 (mV) 0.5 (mV) 30 30 ~40% ~60% σ∆ Vt/2 20 σ∆ Vt/2 20 σ∆ σ∆ σ∆ σ∆ σ∆ σ∆ 10 10 0 0 -0.55 -0.47 -0.39 0.36 0.40 0.44 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 V T (V) V T (V) 9

  10. Junction Leakage • I junction well controlled, consistent across V T range µ m) µ m) PMOS leakage (pA/um) (L = 1 µ µ µ NMOS leakage (pA/um) (L = 1 µ µ µ 100 100 10 10 1 1 0.30 0.35 0.40 0.45 0.50 -0.2 -0.3 -0.4 -0.5 V T (V) V T (V) 10

  11. DDC Enhanced Body Effect 300 Control DDC 250 Body factor (mV/V) FF 200 150 I off TT 100 50 SS 0 NMOS PMOS NMOS PMOS I ON SRAM Logic • Highly doped screen layer increases body coefficient by ~4x to ~7x • Allows significant process corner pull-in 11

  12. Corner Pull-in in Action NMOS PMOS 12

  13. Presentation Outline • Low-power SoC platform • Process and device results • Circuit results – SRAM V DDmin reduction – Digital logic power reduction – Analog matching and performance • Conclusions 13

  14. SRAM V DDmin Improvement • No circuit changes from baseline—same masks – 6-T 9.4Mb arrays 100 – No redundancy 90 80 % Yield (9.4 Mb) 70 60 50 40 30 20 -40C 10 RT 125C 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 V DD (V) 14

  15. Circuit Logic Corner Pull-in • Inverter ring oscillator measurements 0.45 • Baseline V DD = 1.2V Control 0.40 DDC SS • DDC V DD = 0.9V DDC TT 0.35 Total power (mW) DDC FF • SS frequency 0.30 400MHz to 150MHz 0.25 by adjusting BB 0.20 FF@ • FF frequency Vbb=-0.8V 0.15 500MHz to 200MHz 0.10 by adjusting BB SS@ 0.05 Vbb=0V 0.00 100 200 300 400 500 600 Frequency (MHz) 15

  16. No Body Effect Stack Penalty • Higher low V DS I EFF counteracts body bias 1.0 NAND DDC impact in stacks (normalized to inverter) 0.9 NOR DDC Relative RO Frequency NAND Control 0.8 NOR Control • Ring oscillator 0.7 – NAND (NMOS stack) NOR (PMOS stack) 0.6 gates are faster than 0.5 baseline 0.4 0.3 • DDC V DD = 0.9V 0.2 • Control V DD = 1.2V 2 3 4 Number of Inputs 16

  17. Logic Power Reduction with DDC • Inverter ring oscillator 0.6 • Sweep V DD and reverse body bias 0.5 Total power (mW) 0.4 • 38% greater 38% 0.3 performance at same total power 0.2 47% 0.1 • 47% less power at 0.0 same performance 0 200 400 600 Frequency (MHz) 17

  18. Logic Power Reduction with DDC • Large logic/SRAM embedded block Normalized Power dissipation • 5.8M gates Dynamic 1.0 Static • 1.45Mb SRAM 0.8 • Same mask set 0.6 0.4 • 47% less power at same performance 0.2 – Control V DD = 1.2V 0.0 – DDC V DD = 0.9V Control DDC with Vbb V DD = 1.2V V DD = 0.9V 18

  19. ARM M-0 Core Results • Preliminary results – DDC implementation achieves 200 MHz @ V DD = 0.6V • Body bias selection not optimized 19

  20. Presentation Outline • Low-power SoC platform • Process and device results • Circuit results – SRAM V DDmin reduction – Digital logic power reduction – Analog matching and performance • Conclusions 20

  21. DDC Analog Benefits • Higher I EFF DDC 7.0 Control 6.0 NMOS I DS (mA) • Reduced V Dsat 5.0 4.0 • Higher R DS 3.0 2.0 • Improved 1.0 matching 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 V DS (V) 21

  22. DDC Analog Circuit Improvement • Current mirrors • Matching improved by – Local: 40% NMOS, 30% PMOS – 16x current gain – Global: 40% NMOS, 30% PMOS 22

  23. DDC Analog Circuit Improvement • Differential Amplifier 1.2 Control DC measurements DDC 1.0 Output voltage (V) – DDC V DD = 1.2V and 0.8 Control V DD = 0.9V 0.6 0.4 0.2 0.0 -20 -10 0 10 20 Input offset (mV) 23

  24. DDC Analog Circuit Improvement • OTA DC measurements • Gain improved 12dB – More consistent gain – Same layout • Better matching allows smaller analog circuits – Reduced loading – Better slew rate 24

  25. Presentation Outline • Low-power SoC platform • Process and device results • Circuit results – SRAM V DDmin reduction – Digital logic power reduction – Analog matching and performance • Conclusions 25

  26. Conclusions • DDC 65/55-nm SOC process – Nominal V DD scaled to 0.9V from 1.2V—up to 47% power savings – Proven on large logic/memory blocks – ARM M-0 core operates at 200 MHz at V DD = 0.6V • 6-T SRAM V DDmin below 400mV demonstrated on 9.4Mb arrays – Un-doped channel mitigates RDF – No halo, well proximity effects • Enhanced body effect – Allows effective logic corner pull-in with body biasing • Improved analog circuit matching and gain • Processing compatible with multi-V T and legacy devices – Straightforward support for existing IP 26

  27. Thank You for Your Attention • Questions? 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend