a dc programming framework for portfolio selection by
play

A DC programming framework for portfolio selection by minimizing the - PowerPoint PPT Presentation

A DC programming framework for portfolio selection by minimizing the transaction costs Pham Viet Nga Department of Mathematics, Hanoi University of Agriculture Pha .m Vi e .t Nga (HUA) HUA 04/11/2013 1 / 21 Table of contents


  1. A DC programming framework for portfolio selection by minimizing the transaction costs Pham Viet Nga Department of Mathematics, Hanoi University of Agriculture Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 1 / 21

  2. Table of contents Mathematical formulation 1 Methodology 2 DC programming and DCA Branch-and-Bound (BB) Solving ( P ) by DCA 3 Method 1: Solving ( P ) by DCA Method 2: Solving ( P ) by DCA-B&B Numerical results 4 Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 2 / 21

  3. Mathematical formulation Table of contents Mathematical formulation 1 Methodology 2 DC programming and DCA Branch-and-Bound (BB) Solving ( P ) by DCA 3 Method 1: Solving ( P ) by DCA Method 2: Solving ( P ) by DCA-B&B Numerical results 4 Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 3 / 21

  4. Mathematical formulation Problem description n assets: the return on asset i is a i (random variable) E ( a − a )( a − a ) T = Σ . a = ( a 1 , . . . , a n ) , E ( a ) = a , w = ( w i , . . . , w n ) T : current holdings x i : amount transacted in asset i , x i > 0 for buying, x i < 0 for selling, x = ( x 1 , . . . , x n ) T : portfolio selection. Adjusted portfolio w + x ⇒ The wealth at the end of the period: W = a T ( w + x ), = E ( W − E W ) 2 = ( w + x ) T Σ( w + x ) E W = a T ( w + x ) , Shortselling constraints: w i + x i ≥ − s i , ∀ i where s i ≥ 0 Constraint on Expected return: a ( w + x ) ≥ r min Constraint on Variance: ( w + x ) T Σ( w + x ) ≤ σ 2 max Diversification constraints: w i + x i ≤ λ i 1 T ( w + x ) , ∀ i , λ i ≥ 0 Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 4 / 21

  5. Mathematical formulation Mathematical formulation Problem ( P )  n �    min φ ( x ) = φ i ( x i )     i =1   � �  s.t. a ( w + x ) ≥ r min � n φ i ( x i ) | x ∈ C or min φ ( x ) =  w i + x i ≥ − s i , ∀ i  i =1     w i + x i ≤ λ i 1 T ( w + x ) , ∀ i     ( w + x ) T Σ( w + x ) ≤ σ 2 max φ i is the transaction cost function for asset i given by   0 , x i = 0  β i − α 1 ( β i , α 1 i , α 2 φ i ( x i ) = i ≥ 0 , ∀ i ) i x i , x i < 0   β i + α 2 i x i , x i > 0 Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 5 / 21

  6. Mathematical formulation Mathematical formulation Problem ( P )  n �    min φ ( x ) = φ i ( x i )     i =1   � �  s.t. a ( w + x ) ≥ r min � n φ i ( x i ) | x ∈ C or min φ ( x ) =  w i + x i ≥ − s i , ∀ i  i =1     w i + x i ≤ λ i 1 T ( w + x ) , ∀ i     ( w + x ) T Σ( w + x ) ≤ σ 2 max φ i is the transaction cost function for asset i given by   0 , x i = 0  β i − α 1 ( β i , α 1 i , α 2 φ i ( x i ) = i ≥ 0 , ∀ i ) i x i , x i < 0   β i + α 2 i x i , x i > 0 Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 5 / 21

  7. Methodology Table of contents Mathematical formulation 1 Methodology 2 DC programming and DCA Branch-and-Bound (BB) Solving ( P ) by DCA 3 Method 1: Solving ( P ) by DCA Method 2: Solving ( P ) by DCA-B&B Numerical results 4 Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 6 / 21

  8. Methodology DC programming and DCA DC programming and DCA: DC program DC = Difference of Convex functions DC program inf { f ( x ) = g ( x ) − h ( x ) | x ∈ R n } ( P dc ) ( g , h : lower semicontinuous proper convex functions on R n ) g − h : a DC decomposition of f . g , h : convex DC components of f . g ∗ , h ∗ : conjugate functions of g , h . g ∗ ( y ) := sup {� x , y � − g ( x ) | x ∈ R n } , y ∈ R n Subdifferential of a convex function θ at x 0 ∈ dom f (dom f := { x ∈ R n : θ ( x ) ≤ + ∞} ) ∂θ ( x 0 ) := { y ∈ R n : θ ( x ) ≥ θ ( x 0 ) + � x − x 0 , y � , ∀ x ∈ R n } Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 7 / 21

  9. Methodology DC programming and DCA DC programming and DCA: DC program DC = Difference of Convex functions DC program inf { f ( x ) = g ( x ) − h ( x ) | x ∈ R n } ( P dc ) ( g , h : lower semicontinuous proper convex functions on R n ) g − h : a DC decomposition of f . g , h : convex DC components of f . g ∗ , h ∗ : conjugate functions of g , h . g ∗ ( y ) := sup {� x , y � − g ( x ) | x ∈ R n } , y ∈ R n Subdifferential of a convex function θ at x 0 ∈ dom f (dom f := { x ∈ R n : θ ( x ) ≤ + ∞} ) ∂θ ( x 0 ) := { y ∈ R n : θ ( x ) ≥ θ ( x 0 ) + � x − x 0 , y � , ∀ x ∈ R n } Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 7 / 21

  10. Methodology DC programming and DCA DC programming and DCA: DC program DC = Difference of Convex functions DC program inf { f ( x ) = g ( x ) − h ( x ) | x ∈ R n } ( P dc ) ( g , h : lower semicontinuous proper convex functions on R n ) g − h : a DC decomposition of f . g , h : convex DC components of f . g ∗ , h ∗ : conjugate functions of g , h . g ∗ ( y ) := sup {� x , y � − g ( x ) | x ∈ R n } , y ∈ R n Subdifferential of a convex function θ at x 0 ∈ dom f (dom f := { x ∈ R n : θ ( x ) ≤ + ∞} ) ∂θ ( x 0 ) := { y ∈ R n : θ ( x ) ≥ θ ( x 0 ) + � x − x 0 , y � , ∀ x ∈ R n } Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 7 / 21

  11. Methodology DC programming and DCA DC programming and DCA: DC Algorithm DCA = DC algorithm Constructing two sequences { x k } et { y k } , candidates to be solutions of ( P dc ) and its dual program respectively Generic DCA scheme Initial point x 0 ∈ dom g , k ← − 0 Repeat: x k − → y k ∈ ∂ h ( x k ) ւ x k +1 ∈ ∂ g ∗ ( y k ) − → y k +1 ∈ ∂ h ( x k +1 ) Until: convergence of { x k } . x k +1 ∈ ∂ g ∗ ( y k ) ⇐ ⇒ x k +1 ∈ arg min { g ( x ) − � x , y k � | x ∈ R n } Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 8 / 21

  12. Methodology Branch-and-Bound (BB) BB: methods for global optimization for nonconvex problems Lower bounds: Found from convex relaxation, duality, Lipschitz or other bounds,... Upper bounds: can be found by choosing any point in the region, or by a local optimization method. Basic idea: partition feasible set into convex sets, and find lower/upper bounds for each form global lower and upper bounds; quit if close enough else, refine partition and repeat Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 9 / 21

  13. Solving ( P ) by DCA Table of contents Mathematical formulation 1 Methodology 2 DC programming and DCA Branch-and-Bound (BB) Solving ( P ) by DCA 3 Method 1: Solving ( P ) by DCA Method 2: Solving ( P ) by DCA-B&B Numerical results 4 Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 10 / 21

  14. Solving ( P ) by DCA Method 1: Solving ( P ) by DCA Method 1: Solving ( P ) by DCA  φ i ( x i )  0 , x i = 0  β i − α 1 φ i ( x i ) = i x i , x i < 0  β i  β i + α 2 i x i , x i > 0 � n φ ( x ) = φ i ( x i ) i =1 x i 0   β i − α 1 x i ≤ − ǫ i i x i ,  f i ( x i )    − c 1 i x i , − ǫ i ≤ x i ≤ 0 f i ( x i ) = c 2  β i i x i , 0 ≤ x i ≤ ǫ i     β i + α 2 i x i , x i ≥ ǫ i � n ( c j i = β i ǫ i + α j f ( x ) = f i ( x i ) i ) i =1 0 x i ǫ i − ǫ i Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 11 / 21

  15. Solving ( P ) by DCA Method 1: Solving ( P ) by DCA Method 1: Solving ( P ) by DCA  φ i ( x i )  0 , x i = 0  β i − α 1 φ i ( x i ) = i x i , x i < 0  β i  β i + α 2 i x i , x i > 0 � n φ ( x ) = φ i ( x i ) i =1 x i 0   β i − α 1 x i ≤ − ǫ i i x i ,  f i ( x i )    − c 1 i x i , − ǫ i ≤ x i ≤ 0 f i ( x i ) = c 2  β i i x i , 0 ≤ x i ≤ ǫ i     β i + α 2 i x i , x i ≥ ǫ i � n ( c j i = β i ǫ i + α j f ( x ) = f i ( x i ) i ) i =1 0 x i ǫ i − ǫ i Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 11 / 21

  16. Solving ( P ) by DCA Method 1: Solving ( P ) by DCA Method 1: Solving ( P ) by DCA  φ i ( x i )  0 , x i = 0  β i − α 1 φ i ( x i ) = i x i , x i < 0  β i  β i + α 2 i x i , x i > 0 � n φ ( x ) = φ i ( x i ) i =1 x i 0   β i − α 1 x i ≤ − ǫ i i x i ,  f i ( x i )    − c 1 i x i , − ǫ i ≤ x i ≤ 0 f i ( x i ) = c 2  β i i x i , 0 ≤ x i ≤ ǫ i     β i + α 2 i x i , x i ≥ ǫ i � n ( c j i = β i ǫ i + α j f ( x ) = f i ( x i ) i ) i =1 0 x i ǫ i − ǫ i Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 11 / 21

  17. Solving ( P ) by DCA Method 1: Solving ( P ) by DCA Method 1: Solving ( P ) by DCA � n f ( x ) = f i ( x i ) i =1 f is a polyhedral DC function f ( x ) ≤ φ ( x ) , ∀ x ∈ C A DC approximation program of ( P ) is � n min { f ( x ) = f i ( x i ) = g ( x ) − h ( x ) | x ∈ C ∩ R 0 } ( P dc ) i =1 Solving ( P dc ) by DCA to find a solution for ( P ) (DCA has a finite convergence for polyhedral DC programs) Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 12 / 21

  18. Solving ( P ) by DCA Method 2: Solving ( P ) by DCA-B&B Method 2: Solving ( P ) by DCA-B&B  φ i ( x i ) 0 , x i = 0   β i − α 1 φ i ( x i ) = i x i , x i < 0  β i  β i + α 2 i x i , x i > 0 l 0 i = min { x i | x ∈ C } u 0 i = max { x i | x ∈ C } x i 0 � φ i ( x i )  � � β i  i − α 1 β i x i , x i ≤ 0 l 0 i � � � φ i ( x i ) =  β i i + α 2 x i ≥ 0 x i , u 0 i l 0 u 0 x i 0 i i Pha .m Viˆ e .t Nga (HUA) HUA 04/11/2013 13 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend