method of evolving junctions finding the shortest paths
play

Method of Evolving Junctions: Finding the Shortest Paths in - PowerPoint PPT Presentation

Method of Evolving Junctions: Finding the Shortest Paths in Cluttered Environment Jun Lu collaboration with Shui-Nee Chow, Magnus Egerstedt Yancy Diaz-Mercado, Haomin Zhou Georgia Institute of Technology SIAM Gators, 2014 Introduction


  1. Method of Evolving Junctions: Finding the Shortest Paths in Cluttered Environment Jun Lu collaboration with Shui-Nee Chow, Magnus Egerstedt Yancy Diaz-Mercado, Haomin Zhou Georgia Institute of Technology SIAM Gators, 2014

  2. Introduction Shortest Path Problem Given a finite number of obstacles in a region M in R 2 or R 3 , what is the shortest path connecting two given points X , Y in M while avoiding the obstacles. X Y 1 / 25

  3. Existing Methods • Polygonal obstacles: optimal alogrithm with complexity O ( n log n ). (Hershberger and Suri) X Y 2 / 25

  4. Existing Methods • Polygonal obstacles: optimal alogrithm with complexity O ( n log n ). (Hershberger and Suri) X Y • Polyhedral obstacles, NP-hard in the framework configuration space . (Canny and Reif) Y X 2 / 25

  5. • Approximation Methods. (Papadimitriou) 3 / 25

  6. • Approximation Methods. (Papadimitriou) • Continuous Settings: Penalty Method X Y 3 / 25

  7. • Approximation Methods. (Papadimitriou) • Continuous Settings: Penalty Method X Y • Front Propagation (Dijkstra, A ∗ , HJB). |∇ d ( x ) | = 1 , d ( Y ) = 0 . 3 / 25

  8. Shortest Path Problem • Starting point X , ending point Y in domain M ⊂ R n . 4 / 25

  9. Shortest Path Problem • Starting point X , ending point Y in domain M ⊂ R n . • Obstacles { P k } k ≤ 1 . The boundary ∂ P k of P k are piecewise C 2 and has level set representation φ k ( x ) = 0. 4 / 25

  10. Shortest Path Problem • Starting point X , ending point Y in domain M ⊂ R n . • Obstacles { P k } k ≤ 1 . The boundary ∂ P k of P k are piecewise C 2 and has level set representation φ k ( x ) = 0. • Admissible paths connecting X and Y is A ( X , Y , M ) = { γ : [0 , 1] → M | γ (0) = X , γ (1) = Y , φ k ( γ ( θ )) ≥ 0 , 1 ≤ k ≤ N } . 4 / 25

  11. Shortest Path Problem • Starting point X , ending point Y in domain M ⊂ R n . • Obstacles { P k } k ≤ 1 . The boundary ∂ P k of P k are piecewise C 2 and has level set representation φ k ( x ) = 0. • Admissible paths connecting X and Y is A ( X , Y , M ) = { γ : [0 , 1] → M | γ (0) = X , γ (1) = Y , φ k ( γ ( θ )) ≥ 0 , 1 ≤ k ≤ N } . • The shortest path is γ opt = argmin γ ∈A J ( γ ) . where J ( γ ) is the Euclidean length of γ . 4 / 25

  12. Separable Path • For any two points x , y ∈ M , define γ 0 ( x , y ) = argmin γ ∈A ( x , y , M ) J ( γ ) , = { z ( λ ) = (1 − λ ) x + λ y , λ ∈ [0 , 1] } , J 0 ( x , y ) = J ( γ 0 ( x , y )) = � x − y � . 5 / 25

  13. Separable Path • For any two points x , y ∈ M , define γ 0 ( x , y ) = argmin γ ∈A ( x , y , M ) J ( γ ) , = { z ( λ ) = (1 − λ ) x + λ y , λ ∈ [0 , 1] } , J 0 ( x , y ) = J ( γ 0 ( x , y )) = � x − y � . • For any two points x , y ∈ ∂ P k , k ≥ 1, define γ k ( x , y ) = argmin γ ∈A ( x , y ,∂ P k ) J ( γ ) , J k ( x , y ) = J ( γ k ( x , y )) . 5 / 25

  14. Separable Path A path γ ∈ A ( X , Y , M ) is SEPARABLE if there are finite number of points, called junctions ( x 0 , x 1 , · · · , x n +1 ) such that γ = γ 0 ( x 0 , x 1 ) · γ k 1 ( x 1 , x 2 ) · · · · γ 0 ( x n , x n +1 ) . Here γ 1 · γ 2 is the concatenation defined by � θ ∈ [0 , 1 γ 1 (2 θ ) , 2 ]; ( γ 1 · γ 2 )( θ ) = θ ∈ [ 1 γ 2 (2 θ − 1) , 2 , 1] . x i +5 x i +1 x i +2 x i x i +3 x i +4 Figure : γ 0 ( x i , x i +1 ) · γ k 1 ( x i +1 , x i +2 ) · γ 0 ( x i +2 , x i +3 ) · 6 / 25

  15. Separable Path Theorem γ opt of the shortest path problem is separable. 7 / 25

  16. Separable Path Theorem γ opt of the shortest path problem is separable. • γ opt is completely determined by finitely many junctions. 7 / 25

  17. Separable Path Theorem γ opt of the shortest path problem is separable. • γ opt is completely determined by finitely many junctions. • Dimension Reduction Finding γ opt = ⇒ Finding junctions ( x 0 , · · · , x n +1 ) Infinite Dimensional = ⇒ Finite Dimensional 7 / 25

  18. Gradient Flow • The length of the path connecting junction x i and x i +1 is � J 0 ( x i , x i +1 ) , i even ; J ( x i , x i +1 ) = J k i ( x i , x i +1 ) , i odd . 8 / 25

  19. Gradient Flow • The length of the path connecting junction x i and x i +1 is � J 0 ( x i , x i +1 ) , i even ; J ( x i , x i +1 ) = J k i ( x i , x i +1 ) , i odd . • The length of the shortest path is n � J ( x 0 , · · · , x n +1 ) = J ( x i , x i +1 ) , x i ∈ ∂ P k i i =0 8 / 25

  20. Gradient Flow • The length of the path connecting junction x i and x i +1 is � J 0 ( x i , x i +1 ) , i even ; J ( x i , x i +1 ) = J k i ( x i , x i +1 ) , i odd . • The length of the shortest path is n � J ( x 0 , · · · , x n +1 ) = J ( x i , x i +1 ) , x i ∈ ∂ P k i i =0 • The gradient flow on the manifold ∂ P k i is dx i � � d θ = −∇ J ( x 0 , · · · , x n +1 ) = −∇ x i J ( x i − 1 , x i ) + J ( x i , x i +1 ) . � �� � J ( x i ) 8 / 25

  21. Gradient Flow • For i odd, J ( x i ) = J 0 ( x i − 1 , x i ) + J k i ( x i , x i +1 ). 9 / 25

  22. Gradient Flow • For i odd, J ( x i ) = J 0 ( x i − 1 , x i ) + J k i ( x i , x i +1 ). • T ( x i , x i +1 ) ∈ T x i ∂ P k i - unit tangent of γ k i ( x i , x i +1 ) at x i . γ k i ( x i , x i +1 ) x i +1 x i T ( x i , x i +1 ) 9 / 25

  23. Gradient Flow • For i odd, J ( x i ) = J 0 ( x i − 1 , x i ) + J k i ( x i , x i +1 ). • T ( x i , x i +1 ) ∈ T x i ∂ P k i - unit tangent of γ k i ( x i , x i +1 ) at x i . γ k i ( x i , x i +1 ) x i +1 x i T ( x i , x i +1 ) • Gradient of J k i is ∇ x i J k i ( x i , x i +1 ) = − T ( x i , x i +1 ) . 9 / 25

  24. Gradient Flow • For i odd, J ( x i ) = J 0 ( x i − 1 , x i ) + J k i ( x i , x i +1 ). • T ( x i , x i +1 ) ∈ T x i ∂ P k i - unit tangent of γ k i ( x i , x i +1 ) at x i . γ k i ( x i , x i +1 ) x i +1 x i T ( x i , x i +1 ) • Gradient of J k i is ∇ x i J k i ( x i , x i +1 ) = − T ( x i , x i +1 ) . • Gradient of J 0 is � x i − x i − 1 � ∇ x i J 0 ( x i − 1 , x i ) = � x i − x i − 1 � · T T 9 / 25

  25. Intermittent Diffusion • The gradient flow on the manifold ∂ P k i is � x i − x i − 1 � dx i d θ = − � x i − x i − 1 � · T − 1 · T . 10 / 25

  26. Intermittent Diffusion • The gradient flow on the manifold ∂ P k i is � x i − x i − 1 � dx i d θ = − � x i − x i − 1 � · T − 1 · T . • Gradient descent only finds local minimizeers. 10 / 25

  27. Intermittent Diffusion • The gradient flow on the manifold ∂ P k i is � x i − x i − 1 � dx i d θ = − � x i − x i − 1 � · T − 1 · T . • Gradient descent only finds local minimizeers. • There could be 2 N locally shortest paths in an environment with N obstacles. 10 / 25

  28. Intermittent Diffusion • Idea: add noise to gradient flow intermittently, dx i = −∇ x i J ( x i ) d θ + σ ( θ ) d W ( θ ) , 11 / 25

  29. Intermittent Diffusion • Idea: add noise to gradient flow intermittently, dx i = −∇ x i J ( x i ) d θ + σ ( θ ) d W ( θ ) , where • W ( θ ) is a standard Brownian motion in tangent space T x i ∂ P k i . 11 / 25

  30. Intermittent Diffusion • Idea: add noise to gradient flow intermittently, dx i = −∇ x i J ( x i ) d θ + σ ( θ ) d W ( θ ) , where • W ( θ ) is a standard Brownian motion in tangent space T x i ∂ P k i . • For 0 = S 1 < T 1 < · · · < S m , m � σ ( θ ) = σ i χ [ S i , T i ] ( θ ) . i =1 y σ 2 σ 3 σ 1 x S 1 T 1 S 2 T 2 S 3 T 3 S 4 11 / 25

  31. Intermittent Diffusion • Diffusion on, get out of local trap. 12 / 25

  32. Intermittent Diffusion • Diffusion on, get out of local trap. • Diffusion off, converges to local minimizers. 12 / 25

  33. Intermittent Diffusion • Diffusion on, get out of local trap. • Diffusion off, converges to local minimizers. • After m diffusions, obtain m local minimzers. 12 / 25

  34. Intermittent Diffusion • Diffusion on, get out of local trap. • Diffusion off, converges to local minimizers. • After m diffusions, obtain m local minimzers. • Set γ opt to be the best minimizer. 12 / 25

  35. Intermittent Diffusion • Diffusion on, get out of local trap. • Diffusion off, converges to local minimizers. • After m diffusions, obtain m local minimzers. • Set γ opt to be the best minimizer. Theorem For any given δ > 0 , the probability that γ opt is the globally shortest path is larger that 1 − δ for appropriate selected σ . 12 / 25

  36. Solving SDEs • The full SDE is � x i − x i − 1 � dx i = − � x i − x i − 1 � · T − 1 d θ · T + σ ( θ ) d W ( θ ) = f ( x i ) d θ · T + σ ( θ ) d W ( θ ) · (1) 13 / 25

  37. Solving SDEs • The full SDE is � x i − x i − 1 � dx i = − � x i − x i − 1 � · T − 1 d θ · T + σ ( θ ) d W ( θ ) = f ( x i ) d θ · T + σ ( θ ) d W ( θ ) · (1) • SDE (1) can be discretized by √ x ∗ i − x n i = f ( x n i )∆ θ T + σ n ∆ θξ, ξ ∼ N ( 0 , I ) . 13 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend