a carbon dioxide partial condensation cycle for high
play

A Carbon Dioxide Partial Condensation Cycle for High Temperature - PowerPoint PPT Presentation

2 nd Information Exchange meeting on Basic Studies in the Field of High Temperature Engineering A Carbon Dioxide Partial Condensation Cycle for High Temperature Reactors Oct. 10th,2001 Research Laboratory for Nuclear Reactors, Tokyo


  1. 2 nd Information Exchange meeting on Basic Studies in the Field of High Temperature Engineering A Carbon Dioxide Partial Condensation Cycle for High Temperature Reactors Oct. 10th,2001 Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology ○ Takeshi Nitawaki Yasuyoshi Kato Yoshio Yoshizawa 1

  2. 1. TITAN Project B a c k g r o u n d I n t e r e s t i n s m a l l a n d m e d i u m s i z e r e a c t o r s i s s t e a d i l y i n c r e a s i n g i n t h e w o r l d f o r e l e c t r i c i t y g e n e r a t i o n a s w e l l a s f o r d i s t r i c t h e a t i n g i n c i t i e s a n d i s l a n d . T I T A NP r o j e c t - T o k y o I n s t i t u t e o f T e c h n o l o g y A d v a n c e d N u c l e a r E n e r g y - S t a r t i n D e c e m b e r 1 9 9 9 D e v e l o p m e n t o f A d v a n c e d S m a l l a n d M e d i u m S i z e R e a c t o r - C O 2 d i r e c t c y c l e f a s t r e a c t o r s - C O 2 d i r e c t c y c l e t h e r m a l r e a c t o r s - S i m p l e s a f e b o i l i n g w a t e r r e a c t o r s 2

  3. 2. CO 2 as Coolant <Major advantages of CO 2 > (1)Small burnup reactivity swing & control requirements, efficient burning of MA (due to harder neutron spectrum) (2)Higher heat transport ability than He (due to its thermodynamic properties) (3)Ease in inspection & maintenance (due to Transparency) (4) Simple system and high efficiency with direct cycle (due to condensability) 3

  4. 3. Real Gas Behavior in CO 2 Compression The work W in the isentropic expansion and compression processes of one mol real gas is given by ∫ ∫ = − = − W V dP zRT dP P V : 、 : 、 : 、 Volume P Pressure R Gas Constant : 、 : T Temperatur e z Compressib ility Factor = z f(Tr,Pr) = Tr (Reduced Temperatur e) T/Tc, Tc : Critical Temperatur e = Pr (Reduced Pressure) T/Tc, Pc : Critical Pressure Gases with a same z value take a same behavior according to the “ law of corresponding states ” . (z=1:ideal gas) At the critical temperature and pressure, the z value dips sharply below the ideal line of unity and takes an extremely low value as low as about 0.2. A low z value indicates the real gas is more compressible than the ideal gas. 4

  5. 4(1) Compressibility Factor 1 . 2 1 . 6 1 . 6 3 1 . 4 2 z 4 R e d u c e d T e m p e r a t u r e T r = 1 . 0 1 . 1 1 . 4 6 8 1 0 1 . 2 r C O C o m p r e s s i o n 1 5 2 o t c 1 . 0 a F 2 H e C o m p r e s s i o n y 0 . 8 1 . 6 t i l 1 . 4 i b i 0 . 6 s s 1 . 2 e r 0 . 4 p 1 . 1 D r a w n f r o m t h e d a t a i n m o 0 . 2 O . A . H o u g e n , e t a l . , " C h e m i c a l P r o c e s s P r i n c i p l e s , C 1 . 0 P a r t Ⅱ, T h e r m o d y n a m i c s " , J o h n W i l e y & S o n s ( 1 9 6 0 ) 0 . 0 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 R e d u c e d P r e s s u r e P r 5

  6. 4(2) Critical Parameters & Compressibility Factor T y p i c a l T y p i c a l C r i t i c a l C o m p r e s s i o n E x p a n s i o n P a r a m e t e r s ( 3 5 ℃ 、5 M P a ) G a s ( 6 5 0 ℃ 、1 2 . 5 M P a ) T c P c T r P r z T r P r z ( K ) ( M P a ) H e 5 . 1 9 5 0 . 2 7 5 5 9 . 3 1 1 8 . 1 8 ~1 1 7 7 . 7 0 5 4 . 9 5 ~1 C O 3 0 4 . 1 4 7 . 3 8 4 1 . 0 1 0 . 6 8 ~0 . 7 3 . 0 3 1 . 6 9 ~1 2 T r : R e d u c e d T e m p e r a t u r e (= T /T c 、 T c : C r i t i c a l T e m p e r a t u r e ) 、 P r : R e d u c e d P r e s s u r e (= P /P c 、 P c : C r i t i c a l P r e s s u r e ) 、 z : C o m p r e s s i b i l i t y F a c t o r The compression work of CO near the critical point 2 ( 31 ℃、7.4MPa ) is smaller than that of He. 6

  7. 5. CO Direct Cycle 2 (1) Carbon dioxide - Condensable from gas to liquid phase - Critical temperature = 31 ℃ (304K) (2)Variation of CO 2 Cycle ① Full Condensation Cycle ② Partial Condensation Cycle ③ Non - Condensation Cycle (Brayton Cycle ) 7

  8. 6(1) CO 2 Cycle -Full Condensation - ④ Turbine Turbine ④ Work Generator Reactor Power Temperature ⑤ ⑤ Reactor ③ Cooling ⑥ Water Pump Recuperation ③ Heat Pump ② ① ② Work ⑥ Recuperator Condenser ① Condenser Rejection Heat Liquid CO 2 Storage Tank Entropy (a) Coolant flow circuit (b)T-S diagram 8

  9. 6(2) CO 2 Cycle -Non Condensation - ④ R e a c t o r C o m p r e s s o r Ⅱ G e n e r a t o r T u r b i n e ④ C o m p r e s s o r Ⅰ W o r k R e a c t o r r P o w e r ⑧ e e l ⑤ r o ① T u r b i n e u ⑤ o t C a ③ ⑦ - r r ③ e e t r n p e I l o m o R e c u p e r a t i o n e C T H e a t - e ② r ② C o m p r e s s o r P ⑥ ⑥ W o r k ⑧ P r e - C o o l e r R e c u p e r a t o r ① ⑦ R e j e c t i o n H e a t I n t e r - C o o l e r L i q u i d C O S t o r a g e T a n k R e j e c t i o n H e a t 2 E n t r o p y (a) Coolant flow circuit (b) T-S diagram 9

  10. 6(3) CO 2 Cycle -Partial Condensation - ⑤ C o m p r e s s o r Ⅱ R e a c t o r ⑤ G e n e r a t o r T u r b i n e C o m p r e s s o r Ⅰ W o r k R e a c t o r ⑪ P o w e r ⑥ ⑩ e T u r b i n e ⑥ r C o n d e n s e r u ⑨ ④ t r ④ e a l r o e o ① p ③ C P u m p - m R e c u p e r a t i o n e r e ② H e a t ⑪ P T ③ ⑦ C o m p r e s s o r ⑦ ⑧ W o r k ② ⑧ P u m p ⑩ R e c u p e r a t o r Ⅱ W o r k P r e - C o o l e r ⑨ ① R e j e c t i o n H e a t R e c u p e r a t o r Ⅰ C o n d e n s e r L i q u i d C O S t o r a g e T a n k R e j e c t i o n H e a t 2 E n t r o p y (a) Coolant flow circuit (b) T-S diagram 10

  11. 7. Comparison of Cycle Efficiency 6 0 R e a c t o r O u t l e t P r e s s u r e P a r a m e t e r s F u l l C o n d . N o n - C o n d . P a r t i a l C o n d . : 2 0 . 0 M P a : 1 7 . 5 M P a 5 5 P r e - C o o l e r - 3 5 3 5 : 1 5 . 0 M P a T e m p . ( ℃ ) : 1 2 . 5 M P a I n t e r - C o o l e r - 3 5 - : 1 0 . 0 M P a T e m p . ( ℃ ) 5 0 : 7 . 5 M P a %) C o m p r e s s o r N o n - P r e s s u r e - S a m e f o r T w o - P r o p o s e d T h e r m a l R a t i o ( . M P a ) C o n d . ( R e a c t o r 4 5 C o n d e n s e r 2 5 - 2 5 y T e m p . ( ℃ ) c PBMR P r o p o s e d F a s t n T u r b i n e 9 0 9 0 9 0 e R e a c t o r E f f i c i e n c y ( % ) i AGR 4 0 c i C o m p r e s s o r f - 9 0 9 0 f P a r t i a l C o n d . F B R E f f i c i e n c y ( % ) E P u m p e 9 0 - 9 0 APWR 3 5 l E f f i c i e n c y ( % ) c y E x p a n s i o n F i x e d O u t l e t f o r M a x . ABWR f i x e d t o 3 . 5 C R a t i o ( - ) P r e s s u r e e f f i c i e n c y 3 0 Ⅰ : 9 0 Ⅱ :C a l c u l a t e d F u l l C o n d . R e c u p e r a t o r s o a s t o E f f e c t i v e n e s s 9 0 9 0 k e e p L M T D ( % ) o f R e c u p . Ⅱ 2 5 o f 3 0 ℃ 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 R e a c t o r O u t l e t T e m p . ( ℃) 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend