3d descriptor design and learning for robust non rigid
play

3D Descriptor Design and Learning for Robust Non-rigid Shape - PowerPoint PPT Presentation

3D Descriptor Design and Learning for Robust Non-rigid Shape Matching Jianwei Guo NLPR, Institute of Automation, Chinese Academy of Sciences Sept.17, 2020 GAMES Webinar 1 Team--3D Visual Computing [ACM TOG (SIGGRAPH Asia) 2012]


  1. 3D Descriptor Design and Learning for Robust Non-rigid Shape Matching Jianwei Guo 郭建伟 NLPR, Institute of Automation, Chinese Academy of Sciences Sept.17, 2020 GAMES Webinar 1

  2. Team--3D Visual Computing [ACM TOG (SIGGRAPH Asia) 2012] [GMP 2006, CAD 2012, JCAD 2018] [ACM TOG (SigAsia) 2016] [CAGD 2016] [TVCG 2017] [ CAGD 2018 ] [ IEEE TIFS 2018 ] [CAD 2020] [CGF 2018] [CAD 2019] [TVCG 2018] [CGF 2019] [TVCG 2020] [TVCG 2020] [ACM TOG 2020] [ECCV 2018] [CVPR 2019] [ ACM TOG (SIGGRAPH) 2020] Mode delin ing & Mesh sh Optimi imizatio zation Shape Analysis alysis 2

  3. 3D Shape Descriptor Local descriptor Global descriptor 3

  4. 3D Shape Descriptor Descriptor design goals: Discriminative: able to determine if a pair • of vertices is similar or different Robust: work with different discretizations • of a surface Local descriptor 4

  5. Applications Shape matching/correspondence Shape retrieval [Ovsjanikov et al. 2017;Wang et al. 2018] [Ovsjanikov et al. 2009] Shape segmentation Surface registration [Rustamov 2007] 5 [Lui et al. 2010]

  6. Shape matching/correspondence 6

  7. Shape matching/correspondence Van Kaick et al.: A survey on shape correspondence . CGF, 2011. 7 Ovsjanikov et al.: Computing and processing correspondences with functional maps . SIGGRAPH ASIA 2016 Courses.

  8. Related Work Spatial domain approaches ❖ SI [Johnson and Hebert 3DSC [Frome et al. 2004] RoPS [Guo et al. 2013] SHOT [Tombari et al. 2010] 1999] PFH [Rusu et al. 2008] TriSI [Guo et al. 2015] FPFH [Rusu et al. 2009] Mesh-HOG [Zaharescu et al. 2009] Guo et al.: A comprehensive performance evaluation of 3D local feature descriptors . IJCV, 2016. 8

  9. Related Work Spectral domain approaches ❖ Shape-DNA [1999Reuter et al. GPS [Rustamov 2007 ] HKS [Sun et al. 2010] 2006] Scale-invariant HKS [Bronstein WKS [Aubry et al. 2011] DTEP [Melziet al. 2018] and Kokkinos 2010] 9

  10. Related Work Deep learning approaches ❖ [Zeng et al. 2017] [Huang et al. 2018] CGF [Khoury et al. 2017] PPFNet [Deng et al. 2018] • Mesh-aware OSD [Litman and Bronstein 2014] [Boscaini et al. 2015, 2016] [Masci et al. 2018] 10

  11. Related Work Non-learned descriptors ❖ Supervised descriptors ❖ • + pros : : WKS and HKS are robust • + pros: GNNs compute discriminative descriptors • - cons : not as discriminative as • - cons : less robust to different surface supervised descriptors discretizations 11

  12. Datasets SCAPE [Anguelov et al. 2005] TOSCA [Bronstein et al. 2008] SPRING [Yang et al. 2014] FAUST [Bogo et al. 2014] 12

  13. Our Work Contributions ❖ — Two new non-learned features, namely, Local Point Signature (LPS) and Wavelet Energy Decomposition Signature (WEDS). They exhibit high resilience to changes in mesh resolution, triangulation, scale, and rotation. — Two supervised frameworks to transform the non-learned features to more discriminative descriptors [ECCV 2018] [CVPR 2019] [ CVMJ 2020 ] [ ACM TOG (SIGGRAPH) 2020] 13

  14. 1-Descriptor Learning using Geometry Images Motivation ❖ Geometry images [Gu et al. 2002] 14

  15. 1-Descriptor Learning using Geometry Images Motivation ❖ Desbrun et al.: Intrinsic parameterizations of surface meshes . CGF, 2002 15

  16. 1-Descriptor Learning using Geometry Images Triplet Neural Network ❖ 16

  17. 1-Descriptor Learning using Geometry Images Triplet Loss ❖ • • Classic triplet loss: Min-Coefficient of Variation (Min-CV) loss: 17

  18. 1-Descriptor Learning using Geometry Images Results: shape matching ❖ 18

  19. 1-Descriptor Learning using Geometry Images Discrete Geodesic Polar Coordinates (DGPC) ❖ ill-shaped triangles degenerate triangles DGPC [ Melvær and Reimers 2012 ] Melvær and Reimers. Geodesic polar coordinates on polygonal meshes . CGF, 2012 19

  20. 1-Descriptor Learning using Geometry Images Results : shape correspondence ❖ • Cumulative match characteristic (CMC) • Cumulative geodesic error ( CGE ) FAUST SPRING 20

  21. 1-Descriptor Learning using Geometry Images Results : shape correspondence ❖ SCAPE 21

  22. 1-Descriptor Learning using Geometry Images Results : shape correspondence ❖ FAUST 22

  23. 2-Robust Local Spectral Descriptor Motivation ❖ Approach? Dataset? Resolutions, triangulations, scales, rotations 23

  24. 2-Robust Local Spectral Descriptor Motivation ❖ Dirichlet energy → : S f R ( ) ( ) ( ) ( )   2 =  =  E f f v dv f v f v dv 24 S S

  25. 2-Robust Local Spectral Descriptor Local Point Signature ❖ ( ) ( ) ( ) ( )   2 =  =  ( ) E f f v dv f v f v dv  = −  div f f S S Laplace – Beltrami operator  +   − cot cot ij ij  if , i j areadjacent 2 a  i   +  cot cot  = =  ik ik L if i j ij 2  a k i  0 otherwise    +  ( ) cot cot ( ) 1  ( ) ( )  =   ij ij  =   = − -  = − Mesh f v f v f v L , 0,1,..., 1 | 0,1,..., 1 M i i k i i k i i j i i 2 a ( )  → j N v i : f V R i 25

  26. 2-Robust Local Spectral Descriptor Local Point Signature ❖  =   = −   =   , 0,1,..., 1 T T A i i k , A i i i j i j A Spectral coefficients − ( ) N 1 =  =    =  =  T 2 AL T E f f f , f f A j j j j j A j =0 − − ( ) 1 1 d N N d    = → =   =   d 2 2 ( , ,..., ) : E F F f f f V R ij j j ij 1 2 d = = i 1 j =0 j =0 i 1   d d d    =        2 2 2 , ,..., sf  − − 1 1 2 2 1 1 i i N iN   = = = i 1 i 1 i 1 26

  27. 2-Robust Local Spectral Descriptor Local Point Signature ❖ • Build a local patch mesh around a vertex • Compute Laplacian eigenvectors and eigenvalues • Compute spectral coefficients  =  =  = → T , 3 f f A ( , , ): X x x x V R j j j 1 2 3 A • LPS is derived from Dirichlet energy and expressed as follows   3 3 3    =         2 2 2 , ,.., LPS   1 1 2 2 16 16 i i i   = = = 1 1 1 i i i 27

  28. 2-Robust Local Spectral Descriptor Descriptor learning ❖ 28

  29. 2-Robust Local Spectral Descriptor Descriptor learning ❖ 29

  30. 2-Robust Local Spectral Descriptor Dataset ❖ Discrete optimization method ( Wang et al. 2019) 30

  31. 2-Robust Local Spectral Descriptor Results: Robust to resolution and triangulation ❖ 31

  32. 2-Robust Local Spectral Descriptor Results: Comparison ❖ 32

  33. 3-Descriptor Learning using Multiscale GCNs Motivation ❖ – Time-consuming – Miss global information cut a geodesic disk 34

  34. 3-Descriptor Learning using Multiscale GCNs Graph wavelets ❖ Wavelet filter functions Scaling functions Wavelet functions • Multiscale property of wavelet functions 35

  35. 3-Descriptor Learning using Multiscale GCNs Graph wavelets ❖ • Reconstruction property of multiscale wavelet functions • Robustness to the change of resolution and triangulation 36

  36. 3-Descriptor Learning using Multiscale GCNs Wavelet Energy Decomposition Signature (WEDS) ❖ Reconstruct discrete Dirichlet energy Restructure into a sum per vertex Collect the local energy using multiscale wavelets 37

  37. 3-Descriptor Learning using Multiscale GCNs Wavelet Energy Decomposition Signature (WEDS) ❖ 38

  38. 3-Descriptor Learning using Multiscale GCNs Multiscale Graph Convolution Network ❖ • Convolutions on graphs are defined as: • ChebyNet approximates using 𝑛 -order polynomials: • MGCN approximates using multiscale wavelet filter basis: 39

  39. 3-Descriptor Learning using Multiscale GCNs Multiscale Graph Convolution Network ❖ • The multiscale convolution can be simplified as follows: Robustness to discretization Convolve local and global information 40

  40. 3-Descriptor Learning using Multiscale GCNs Results: performance of WEDS ❖ 41

  41. 3-Descriptor Learning using Multiscale GCNs Results: shape correspondence ❖ FAUST 42

  42. 3-Descriptor Learning using Multiscale GCNs Results: robust to resolution and triangulation ❖ 43

  43. 3-Descriptor Learning using Multiscale GCNs Results: robust to resolution and triangulation ❖ Extended FAUST 44

  44. 3-Descriptor Learning using Multiscale GCNs Results: non-isometric shapes ❖ 45

  45. Conclusions Contributions ❖ — Two non-learned features: Local Point Signature (LPS) and Wavelet Energy Decomposition Signature (WEDS). — Two supervised frameworks to transform the non-learned features to more discriminative descriptors Future work ❖ — Extend to point clouds and triangle soups — Industrial applications 46

  46. Acknowledgements Co-authors: CCF- 腾讯犀牛鸟科研基金 Dong-Ming Yan , CASIA Yiqun Wang , CASIA Hanyu Wang , University of Maryland-College Park Jing Ren, Peter Wonka , KAUST Code and Data: LDGI: https://github.com/jianweiguo/local3Ddescriptorlearning LPS: https://github.com/yiqun-wang/LPS MGCN: https://github.com/yiqun-wang/MGCN Thank you! 47

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend