3
play

3 = JKR F W d Pull- -Off Force Off Force Pull Contact - PowerPoint PPT Presentation

! Static Equilibrium ! Static Equilibrium ! Hydrodynamic Forces and Torque ! Hydrodynamic Forces and Torque ! Adhesion Forces for Bumpy Particles ! Adhesion Forces for Bumpy Particles ! Electrostatic Forces ! Electrostatic Forces ! Capillary


  1. ! Static Equilibrium ! Static Equilibrium ! Hydrodynamic Forces and Torque ! Hydrodynamic Forces and Torque ! Adhesion Forces for Bumpy Particles ! Adhesion Forces for Bumpy Particles ! Electrostatic Forces ! Electrostatic Forces ! Capillary Forces ! Capillary Forces ! Rolling and Sliding Removal ! Rolling and Sliding Removal ! Critical Detachment Shear Velocity ! Critical Detachment Shear Velocity ME 437/537 Ahmadi ME 437/537 Ahmadi Spherical Particles Spherical Particles 3 = π JKR F W d Pull- -Off Force Off Force Pull Contact Radius Contact Radius po A 4 ⎡ ⎤ π ⎛ π 2 ⎞ d 3 W d 3 W d ⎢ ⎥ = + + π + ⎜ ⎟ 3 A A a P 3 W dP ⎢ A ⎝ ⎠ ⎥ 1 2 K 2 2 ⎛ π ⎞ ⎣ ⎦ 2 3 Contact Radius Contact Radius 3 W d = ⎜ ⎟ A a ⎜ ⎟ ⎝ ⎠ 8 K at Separation at Separation ( ) ( ) − ⎡ ⎤ 1 − ν − ν 2 2 4 1 1 = + ⎢ 1 2 ⎥ K ⎣ ⎦ 3 E E 1 2 ME 437/537 Ahmadi ME 437/537 Ahmadi 1

  2. Schematics of a Schematics of a β 2 3 Bumpy Particle Bumpy Particle = π β Adhesion Force Adhesion Force JKR f W Per contact Bump Per contact Bump po A 2 d d β = Total 3 Total n n N = π β JKR F N W u b Adhesion Adhesion ad c A 2 Force Force ME 437/537 Ahmadi ME 437/537 Ahmadi 2 2 n e Capillary Force Capillary Force − Per Contact Bump Per Contact Bump Boltzmann Boltzmann dkT e = f(n) Charge Charge = 4 πσβ 2 2 + ∞ n e f c Distribution Distribution − ∑ dkT e = −∞ n = πσβ Average Number Average Number Total Capillary Total Capillary F 4 N n ≈ 2 . 37 d of Charge of Charge c c Force Force ME 437/537 Ahmadi ME 437/537 Ahmadi 2

  3. Diffusion Charging Diffusion Charging Boltzmann Charge Distribution Charge Distribution Boltzmann π Average Absolute Diameter Neutral dkT d c = + Number of Charges Fraction 2 i n ln( 1 e N t ) d ( µ m ) f(0) diff i 2 2 e 2 kT 5 0.0606 5.29 10 0.0428 7.46 ε 2 3 Ed Field Field = 15 0.0349 9.17 n ε + Charging Charging field 2 4 e 20 0.03 10.55 ME 437/537 Ahmadi ME 437/537 Ahmadi Spherical Particles Spherical Particles Diffusion and Field Charging Diffusion and Field Charging Diameter Number of Charges 2 q = − F qE { πε d ( µ m ) e 2 Diffusion Field Combined 16 y 1 4 2 4 3 o Coulomb 5 407 4340 4747 Im age 10 874 17361 18235 πε 3 6 2 qEd 3 d E + − o 15 1365 39062 40427 3 4 16 y 128 y 1 2 3 1 42 4 43 4 20 1870 69444 71314 dielectrop horetic Polarizati on ME 437/537 Ahmadi ME 437/537 Ahmadi 3

  4. = − F 1 . 5 qE e ⎡ ⎤ − + 2 2 2 2 q ( 1 3 / N ) [( 4 n 1 )( 3 / N ) − + Charge Charge b ⎢ ⎥ πε β + 2 2 2 3 / 2 ⎣ ⎦ 4 d 3 ( 4 n 1 ) o b − πε β 2 2 72 E o ME 437/537 Ahmadi ME 437/537 Ahmadi π µ 3 f dC πµ 2 2 f d V = d = F V Hydrodynamic Hydrodynamic m Drag Force M Drag Force t t C Torque Torque C c c = + 0 . 687 C 1 0 . 15 Re d + = dV + ( ) dy Near Wall Near Wall = ρµ 1 u M 1 . 72 y 2 F 1 . 61 d V Lift Force 2 Lift Force l 1 Peak Velocity Peak Velocity 2 dV dy ME 437/537 Ahmadi ME 437/537 Ahmadi 4

  5. F Rolling Rolling l M t d + ≥ + + β M F (F F F )0.58n h h ad e c b F 2 t ≥ + + Sliding Sliding F k(F F F ) h ad c e Electrostatic Electrostatic + ≥ + + + F F F F F F F a ec ed ad ei ep c F F c e ME 437/537 Ahmadi ME 437/537 Ahmadi + = + u y Saturation Saturation Charge Charge + + + = − β 2 ≤ v y , y 1 . 85 o + + + = β w 2 y z o β o = 0 . 01085 ME 437/537 Ahmadi ME 437/537 Ahmadi 5

  6. q=20 µ µ C/g C/g Neutral q=20 Neutral Particles Particles ME 437/537 Ahmadi ME 437/537 Ahmadi Boltzmann Saturation Boltzmann Saturation Charge Charge Charge Charge ME 437/537 Ahmadi ME 437/537 Ahmadi 6

  7. q=20 µ µ C/g C/g Saturation q=20 Saturation Charge Charge ME 437/537 Ahmadi ME 437/537 Ahmadi Boltzmann Saturation Boltzmann Saturation Charge Charge Charge Charge ME 437/537 Ahmadi ME 437/537 Ahmadi 7

  8. F l M t F d / 2 t a F a F e ME 437/537 Ahmadi ME 437/537 Ahmadi N − 2 c ( 1 ) 2 3 q 0 . 13 N = − − N + r c F 1 . 5 qE ( ) πε β e 2 2 2 4 d N o − π β ε 2 2 2 24 N E . c o β 2 ME 437/537 Ahmadi ME 437/537 Ahmadi 8

  9. Boltzmann Saturation Boltzmann Saturation Charge Charge Charge Charge Rough Rough Rough Rough Particles Particles Particles Particles ME 437/537 Ahmadi ME 437/537 Ahmadi Rough Rough Particles Particles ME 437/537 Ahmadi ME 437/537 Ahmadi 9

  10. � Rolling detachment is the dominant mechanism � Rolling detachment is the dominant mechanism for bumpy particle removal in turbulent flows. for bumpy particle removal in turbulent flows. � � Drag and hydrodynamic torque are dominant for Drag and hydrodynamic torque are dominant for particle detachment from the wall. particle detachment from the wall. � � Electrical Electrical forces forces contribute contribute significantly significantly to to particle particle adhesion. adhesion. � increasing the number of bumps reduces the � increasing the number of bumps reduces the adhesion force. adhesion force. � � Patch charge model presents a more realistic Patch charge model presents a more realistic picture picture of surface charge distribution. of surface charge distribution. ME 437/537 Ahmadi ME 437/537 Ahmadi 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend