1604 03377 renormalizable su 5 unification
play

1604.03377 Renormalizable SU(5) Unification C.M and P. Fileviez - PowerPoint PPT Presentation

1604.03377 Renormalizable SU(5) Unification C.M and P. Fileviez Perez IFIC, Universitat de Valencia-CSIC BSM Journal Club Motivation Theorem for model builders: B eauty - S implicity - P redictability Aesthetics: why three gauge groups?


  1. 1604.03377 Renormalizable SU(5) Unification C.M and P. Fileviez Perez IFIC, Universitat de Valencia-CSIC BSM Journal Club

  2. Motivation Theorem for model builders: B eauty - S implicity - P redictability • Aesthetics: why three gauge groups? • Simplicity: why three different strengths? why so many representations? are quarks and leptons that different? • Predictability: why so many inputs? why arbitrary charges? what about the Yukawas? and the Weinberg angle?

  3. Motivation Theorem for model builders: B eauty - S implicity - P redictability • Aesthetics: why three gauge groups? • Simplicity: why three different strengths? why so many representations? are quarks and leptons that different? • Predictability: why so many inputs? why arbitrary charges? what about the Yukawas? and the Weinberg angle? SU(5) is the only rank 4 candidate able to embed SM!

  4. The simplest GUT: SU(5)

  5. Simplest GUT: SU(5) • Matter content: ¯ 5 ∼ ( 1 , ¯ ⊕ (¯ 10 ∼ (¯ 2 , − 1 / 2 ) 3 , 1 , 1 / 3 ) 3 , 1 , − 2 / 3 ) ⊕ ( 3 , 2 , 1 / 6 ) ⊕ ( 1 , 1 , 1 ) � �� � � �� � � �� � � �� � � �� � ( d c ) L ( u c ) L q L ( e c ) L l L     d c u c − u c 0 u 1 d 1 1 3 2 d c − u c u c 0 u 2 d 2     2 3 1     ¯ d c u c − u c 5 = 10 = 0    u 3 d 3  3 2 1     e + e − u 1 − u 2 − u 3 0     − e + − ν − d 1 − d 2 − d 3 0

  6. Simplest GUT: SU(5) • Matter content: ¯ 5 ∼ ( 1 , ¯ ⊕ (¯ 10 ∼ (¯ 2 , − 1 / 2 ) 3 , 1 , 1 / 3 ) 3 , 1 , − 2 / 3 ) ⊕ ( 3 , 2 , 1 / 6 ) ⊕ ( 1 , 1 , 1 ) � �� � � �� � � �� � � �� � � �� � ( d c ) L ( u c ) L q L ( e c ) L l L     d c u c − u c 0 u 1 d 1 1 3 2 d c − u c u c 0 u 2 d 2     2 3 1     ¯ d c u c − u c 5 = 10 = 0    u 3 d 3  3 2 1     e + e − u 1 − u 2 − u 3 0     − e + − ν − d 1 − d 2 − d 3 0 ⇒ The 15 SM Weyl d.o.f. perfectly fit in the two simplest SU(5) representations!

  7. Simplest GUT: SU(5) � � { T R a , T R b } , T T • What about anomalies? A ( R ) d abc = Tr c } A ( anti-fund ) + A ( anti-symmetric ) = − 1 2 + N − 4 For SU(N), 2

  8. Simplest GUT: SU(5) � � { T R a , T R b } , T T • What about anomalies? A ( R ) d abc = Tr c } A ( anti-fund ) + A ( anti-symmetric ) = − 1 2 + N − 4 For SU(N), 2 A (¯ for N=5, 5 ) + A ( 10 ) = 0

  9. Simplest GUT: SU(5) � � { T R a , T R b } , T T • What about anomalies? A ( R ) d abc = Tr c } A ( anti-fund ) + A ( anti-symmetric ) = − 1 2 + N − 4 For SU(N), 2 A (¯ for N=5, 5 ) + A ( 10 ) = 0 • Hypercharge generator:   − 1 0 0 0 0 0 − 1 0 0 0   1   T 24 = √ 0 0 − 1 0 0 ∝ Y     15 3 0 0 0 0   2 3 0 0 0 0 2 Fixing the normalisation: � 5 Y = 3 T 24

  10. Simplest GUT: SU(5) � � { T R a , T R b } , T T • What about anomalies? A ( R ) d abc = Tr c } A ( anti-fund ) + A ( anti-symmetric ) = − 1 2 + N − 4 For SU(N), 2 A (¯ for N=5, 5 ) + A ( 10 ) = 0 • Hypercharge generator:   − 1 0 0 0 0 0 − 1 0 0 0   1   T 24 = √ 0 0 − 1 0 0 ∝ Y     15 3 0 0 0 0   2 3 0 0 0 0 2 Fixing the normalisation: All hypercharges predicted! � 5 Y = 3 T 24

  11. Simplest GUT: SU(5) • And the gauge bosons? ⊕ (¯ V 24 ∼ ( 8 , 1 , 0 ) ⊕ ( 1 , 3 , 0 ) ⊕ ( 3 , 2 , − 5 / 6 ) 3 , 2 , 5 / 6 ) ⊕ ( 1 , 1 , 0 ) � �� � � �� � � �� � � �� � � �� � G µ W µ X µ Y µ γ µ

  12. Simplest GUT: SU(5) • And the gauge bosons? ⊕ (¯ V 24 ∼ ( 8 , 1 , 0 ) ⊕ ( 1 , 3 , 0 ) ⊕ ( 3 , 2 , − 5 / 6 ) 3 , 2 , 5 / 6 ) ⊕ ( 1 , 1 , 0 ) � �� � � �� � � �� � � �� � � �� � G µ W µ X µ Y µ γ µ τ a 24 � Va V µ = = µ 2 a = 1 G 1 µ + 2 B µ  G 1 G 1 XC 1 YC 1  √ µ µ 2 µ 3 µ 30  2 µ + 2 B µ   G 2 G 2 G 2 XC 2 YC 2  √   1 µ 3 µ µ µ  30    3 µ + 2 B µ G 3 G 3 G 3 XC 3 YC 3 1   √  µ µ  = 1 µ 2 µ √ 30     2 W 3 � 3   µ X 1 X 2 X 3 W +   √ 2 − 10 B µ  µ µ µ µ     W 3  � 3  Y 1 Y 2 Y 3 W − µ  − √ 2 − 10 B µ µ µ µ µ

  13. SU(5): scalar sector 24 H • Breaking I: SU ( 5 ) → SU ( 3 ) ⊗ SU ( 2 ) ⊗ U ( 1 ) Y � Σ 8 � Σ ( 3 , 2 ) 24 H = + Σ S λ 24 , Σ (¯ Σ 3 3 , 2 ) � 24 H � = v 24 √  15diag ( 2 , 2 , 2 , − 3 , − 3 ) : breaks to SM       � 24 H � = v 24 diag ( 1 , 1 , 1 , 1 , − 4 ) : breaks to SU ( 4 ) ⊗ U ( 1 )       � 24 H � = diag ( 0 , 0 , 0 , 0 , 0 ): no breaking

  14. SU(5): scalar sector 24 H • Breaking I: SU ( 5 ) → SU ( 3 ) ⊗ SU ( 2 ) ⊗ U ( 1 ) Y � Σ 8 � Σ ( 3 , 2 ) 24 H = + Σ S λ 24 , Σ (¯ Σ 3 3 , 2 ) � 24 H � = v 24 √  15diag ( 2 , 2 , 2 , − 3 , − 3 ) : breaks to SM       � 24 H � = v 24 diag ( 1 , 1 , 1 , 1 , − 4 ) : breaks to SU ( 4 ) ⊗ U ( 1 )       � 24 H � = diag ( 0 , 0 , 0 , 0 , 0 ): no breaking 5 H • Breaking II: SU ( 3 ) ⊗ SU ( 2 ) ⊗ U ( 1 ) Y → SU ( 3 ) ⊗ U ( 1 ) Q     T 1 0 T 2 0         SSB T 3 5 H = → � 5 H � = 0         H + 0     √ 1 H 0 v 5 / 2 1

  15. But it is too predictive... Predictability may be its most beautiful feature but it is also its Achilles’ heel

  16. Fermion masses • Yukawa Lagrangian ( i , j , k are SU(3) indices and α, β are SU(2) indices) Y 1 ¯ 5 10 5 ∗ L Y ⊃ H + Y 3 10 10 5 H ǫ 5

  17. Fermion masses • Yukawa Lagrangian ( i , j , k are SU(3) indices and α, β are SU(2) indices) Y 1 ¯ 5 10 5 ∗ L Y ⊃ H + Y 3 10 10 5 H ǫ 5 5 i 10 i α + ¯ H α + Y 3 ( 10 ij 10 k α + 10 i α 10 jk ) 5 β Y 1 (¯ 5 β 10 βα ) 5 ∗ ⊃ H ǫ ijk αβ √ • After SSB: � 5 H � = v 5 / 2, v ∗ 3 ) v i d i + ee C ) + 4 ( Y 3 + Y T ( d C u C i u i . L Y ⊃ Y 1 √ √ 2 2 • Fermion masses: v ∗ M d = M T 5 e = Y 1 √ 2 3 ) v 5 M u = 4 ( Y 3 + Y T √ 2

  18. Fermion masses • Yukawa Lagrangian ( i , j , k are SU(3) indices and α, β are SU(2) indices) Y 1 ¯ 5 10 5 ∗ L Y ⊃ H + Y 3 10 10 5 H ǫ 5

  19. Fermion masses • Yukawa Lagrangian ( i , j , k are SU(3) indices and α, β are SU(2) indices) Y 1 ¯ 5 10 5 ∗ L Y ⊃ H + Y 3 10 10 5 H ǫ 5 5 i 10 i α + ¯ H α + Y 3 ( 10 ij 10 k α + 10 i α 10 jk ) 5 β Y 1 (¯ 5 β 10 βα ) 5 ∗ ⊃ H ǫ ijk αβ √ • After SSB: � 5 H � = v 5 / 2, v ∗ 3 ) v i d i + ee C ) + 4 ( Y 3 + Y T ( d C u C i u i . L Y ⊃ Y 1 √ √ 2 2 • Fermion masses: v ∗ M d = M T 5 e = Y 1 √ 2 3 ) v 5 M u = 4 ( Y 3 + Y T √ 2

  20. Unification constraints • RGEs: �  B i = b SM + b I i r I � M GUT  GUT + B i i α − 1 ( M Z ) = α − 1 r I = Log ( M GUT / M I ) 2 π Log i Log ( M GUT / M Z ) , M Z < M I < M GUT M Z  • In Yang-Mills theories:    1 for R scalar ,   1 � �  , S ( R ) b i = S ( R ) T i ( R ) dim j ( R ) 2 for R chiral fermion , 3  − 11 for R gauge boson . R j � = i • Table of B ij ≡ B i − B j contributions to the running: ¯ 5 10 V 24 5 H 24 H ( dc ) L ( uc ) L ( ec ) L bi / Bij lL qL G µ W µ H 1 T Σ 8 Σ 3 3 2 8 1 6 1 1 b 1 0 0 15 rT 0 0 5 5 5 5 5 10 − 22 1 1 b 2 1 0 0 3 0 0 0 0 3 r Σ 3 3 6 1 1 b 3 0 1 1 2 0 − 11 0 0 6 rT 2 r Σ 8 0 − 4 2 8 − 44 − 2 22 − 1 1 − 1 B 12 0 15 rT 0 3 r Σ 3 5 15 15 15 5 3 15 − 22 1 − 1 − 1 1 B 23 1 -1 -1 1 0 11 6 rT 2 r Σ 8 3 r Σ 3 3 6

  21. Unification constraints • Introducing B ij = B i − B j , sin 2 θ W ( M Z ) − α ( M Z ) /α 3 ( M Z ) B 23 5 = 3 / 8 − sin 2 θ W ( M Z ) 8 B 12 3 / 8 − sin 2 θ W ( M Z ) � M GUT � 16 π = Log 5 α ( M Z ) M Z B 12

  22. Unification constraints • Introducing B ij = B i − B j , sin 2 θ W ( M Z ) − α ( M Z ) /α 3 ( M Z ) B 23 5 = 3 / 8 − sin 2 θ W ( M Z ) 8 B 12 3 / 8 − sin 2 θ W ( M Z ) � M GUT � 16 π = Log 5 α ( M Z ) M Z B 12 • Input: sin 2 θ W ( M Z ) = 0.231, α − 1 ( M Z ) = 127.94, α s ( M Z ) = 0.1185

  23. Unification constraints • Introducing B ij = B i − B j , sin 2 θ W ( M Z ) − α ( M Z ) /α 3 ( M Z ) B 23 5 = 3 / 8 − sin 2 θ W ( M Z ) 8 B 12 3 / 8 − sin 2 θ W ( M Z ) � M GUT � 16 π = Log 5 α ( M Z ) M Z B 12 • Input: sin 2 θ W ( M Z ) = 0.231, α − 1 ( M Z ) = 127.94, α s ( M Z ) = 0.1185 • To achieve unification: B 23 = 0.718 B 12 � M GUT � 184.87 = Log M Z B 12

  24. Unification constraints • SM contribution (assuming only the spitting of 5 H ): B SM 23 = 0.53 B SM 12

  25. Unification constraints • SM contribution (assuming only the spitting of 5 H ): B SM 23 = 0.53 B SM 12 • SU(5) contribution (assuming splitting of 24 H too): B SU ( 5 ) B SU ( 5 ) = B SM 23 + 1 3 r Σ 3 − 1 6 r T − 1 2 r Σ 8 most optimistic case 23 23 → � 0.6 B SU ( 5 ) B SM 12 − 1 3 r Σ 3 + 1 B SU ( 5 ) 15 r T 12 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend