12 2 space deformation
play

12.2 Space Deformation Hao Li http://cs621.hao-li.com 1 Hoooray! - PowerPoint PPT Presentation

Spring 2019 CSCI 621: Digital Geometry Processing 12.2 Space Deformation Hao Li http://cs621.hao-li.com 1 Hoooray! 2 Last Time Surface Deformations 3 Space Deformation Displacement function defined on the ambient space d : R 3 R 3


  1. Spring 2019 CSCI 621: Digital Geometry Processing 12.2 Space Deformation Hao Li http://cs621.hao-li.com 1

  2. Hoooray! 2

  3. Last Time Surface Deformations 3

  4. Space Deformation ● Displacement function defined on the ambient space d : R 3 → R 3 ● Evaluate the function on the points of the shape embedded in the space x 0 = x + d ( x ) Twist warp Global and local deformation of solids [A. Barr, SIGGRAPH 84] 4

  5. Freeform Deformation ● Control object ● User defines displacements d i for each element of the control object ● Displacements are interpolated to the entire B i ( x ) : R 3 → R space using basis functions k X d ( x ) = d i B i ( x ) i =1 ● Basis functions should be smooth for aesthetic results 5

  6. Freeform Deformation [Sederberg & Parry 86] ● Control object = lattice ● Basis functions B i ( x ) are trivariate tensor-product splines: l m n X X X d ( x, y, z ) = d ijk N i ( x ) N j ( y ) N k ( z ) i =0 j =0 k =0 6

  7. Freeform Deformation [Sederberg & Parry 86] ● Aliasing artifacts ● Interpolate deformation constraints? ! Only in least squares sense 7

  8. Limitations of Lattices as Control Objects ● Difficult to manipulate ● The control object is not related to the shape of the edited object ● Parts of the shape in close Euclidean distance always deform similarly, even if geodesically far 8

  9. Wires [Singh & Fiume 98] ● Control objects are arbitrary space curves ● Can place curves along meaningful features of the edited object ● Smooth deformations around the curve with decreasing influence 9

  10. Handle Metaphor [RBF, Botsch & Kobbelt 05] ● Wish list for the displacement function d ( x ) : ! Interpolate prescribed constraints ! Smooth, intuitive deformation d ( x i ) = d i d : R 3 → R 3 x → x + d ( x ) 10

  11. Volumetric Energy Minimization [RBF, Botsch & Kobbelt 05] ● Minimize similar energies to surface case Z R 3 k d xx k 2 + k d xy k 2 + . . . + k d zz k 2 dx dy dz ! min ● But displacements function lives in 3D... ! Need a volumetric space tessellation? ! No, same functionality provided by RBFs! 11

  12. Radial Basis Functions [RBF, Botsch & Kobbelt 05] ● Represent deformation by RBFs X d ( x ) = w j ϕ ( k c j � x k ) + p ( x ) j ● Triharmonic basis function ϕ ( r ) = r 3 ! C 2 boundary constraints ! Highly smooth / fair interpolation Z R 3 k d xxx k 2 + k d xyy k 2 + . . . + k d zzz k 2 dx dy dz ! min 12

  13. Radial Basis Functions [RBF, Botsch & Kobbelt 05] ● Represent deformation by RBFs X d ( x ) = w j ϕ ( k c j � x k ) + p ( x ) j ● RBF fitting ! Interpolate displacement constraints ! Solve linear system for w j and p ! 13

  14. Radial Basis Functions [RBF, Botsch & Kobbelt 05] ● Represent deformation by RBFs X d ( x ) = w j ϕ ( k c j � x k ) + p ( x ) j ● RBF evaluation ! Function d transforms points ! Jacobian ∇ d transforms normals ! Precompute basis functions ! ! Evaluate on the GPU! 14

  15. Local & Global Deformations [RBF, Botsch & Kobbelt 05] 15

  16. Local & Global Deformations [RBF, Botsch & Kobbelt 05] 1M vertices movie 16

  17. Space Deformation ● Handle arbitrary input ! Meshes (also non-manifold) ! Point sets ! Polygonal soups ! … ! 3M triangles ● Complexity mainly depends ! 10k components ! Not oriented on the control object, not ! Not manifold the surface 17

  18. Space Deformation ● Handle arbitrary input ! Meshes (also non-manifold) ! Point sets ! Polygonal soups ! … ● Easier to analyze: functions on Euclidean domain ! Volume preservation: |Jacobian| = 1 18

  19. Space Deformation ● The deformation is only loosely aware of the shape that is being edited ● Small Euclidean distance → similar deformation ● Local surface detail may be distorted 19

  20. Cage-Based Deformation [Ju et al. 05] ● Cage = crude version of the input shape ● Polytope (not a lattice) 20

  21. Cage-Based Deformation [Ju et al. 05] ● Each point x in space is represented w.r.t. to the cage elements using coordinate functions k v x p i X x = w i ( x ) p i i =1 21

  22. Cage-Based Deformation [Ju et al. 05] ● Each point x in space is represented w.r.t. to the cage elements using coordinate functions k x p i X x = w i ( x ) p i i =1 22

  23. Cage-Based Deformation [Ju et al. 05] k x 0 = X w i ( x ) p 0 i x ! i =1 p ! i x p i 23

  24. Generalized Barycentric Coordinates ● Lagrange property: w i ( p j ) = δ ij k X ● Reproduction: w i ( x ) p i = x ∀ x , i =1 k X ● Partition of unity: w i ( x ) = 1 ∀ x , i =1 24

  25. Coordinate Functions ● Mean-value coordinates [Floater 2003, Ju et al. 2005] ! Generalization of barycentric coordinates ! Closed-form solution for w i ( x ) 25

  26. Coordinate Functions ● Mean-value coordinates [Floater, Ju et al. 2005] ! Not necessarily positive on non-convex domains 26

  27. Coordinate Functions ● Harmonic coordinates (Joshi et al. 2007) ! Harmonic functions h i ( x ) for each cage vertex p i Δ h = 0 ! Solve subject to: h i linear on the boundary s.t. h i ( p j ) = δ ij MVC HC 27

  28. Coordinate Functions ● Harmonic coordinates (Joshi et al. 2007) ! Harmonic functions h i ( x ) for each cage vertex p i Δ h = 0 ! Solve subject to: h i linear on the boundary s.t. h i ( p j ) = δ ij ● Volumetric Laplace equation ● Discretization, no closed-form 28

  29. Coordinate Functions ● Harmonic coordinates (Joshi et al. 2007) MVC HC 29

  30. Coordinate Functions ● Green coordinates (Lipman et al. 2008) ● Observation: previous vertex-based basis functions always lead to affine- invariance! k m x 0 = X X w i ( x ) p 0 ψ j ( x ) n 0 i + j i =1 j =1 30

  31. Coordinate Functions ● Green coordinates (Lipman et al. 2008) ● Correction: Make the coordinates depend on the cage faces as well k m x 0 = X X w i ( x ) p 0 ψ j ( x ) n 0 i + j i =1 j =1 31

  32. Coordinate Functions ● Green coordinates (Lipman et al. 2008) ● Closed-form solution ● Conformal in 2D, quasi-conformal in 3D GC MVC GC 32

  33. Coordinate Functions ● Green coordinates (Lipman et al. 2008) ● Closed-form solution ● Conformal in 2D, quasi-conformal in 3D Alternative interpretation in 2D via holomorphic functions and extension to point handles : Weber et al. Eurographics 2009 33

  34. Cage-Based Methods: Summary Pros: ● Nice control over volume ! Squish/stretch Cons: ● Hard to control details of embedded surface 34

  35. Non-Linear Space Deformation ! Involve'nonlinear'op,miza,on' ! Enjoy'the'advantages'of'space'warps'' ! Addi,onally,'have'shape<preserving' proper,es' 35

  36. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) approach [Schaefer et al. 2006] ! Points'or'segments'as'control'objects' ! First'developed'in'2D'and'later'extended'to'3D' by'Zhu'and'Gortler'(2007)' 36

  37. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) approach [Schaefer et al. 2006] ! A"ach&an&affine& transforma0on&to&each&point& x & ∈ & R 3 :& & A x ( p ) = M x p + t x ! The&space&warp:& x → A x ( x ) & & 37

  38. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) approach [Schaefer et al. 2006] ! Handles( p i (are(displaced(to( q i ( ! The(local(transforma3on(at( x :( ( A x ( p ) = M x p + t x s.t.( ( k 2 w ( x ) A ( p ) q min ∑ − → i x i i i 1 = ! The(weights(depend(on( x :( w i ( x ) = || p i – x || –2 α ( ( 38

  39. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) approach [Schaefer et al. 2006] ! No#addi'onal#restric'on#on# A x ( ⋅ ) #–#affine# local#transforma'ons# 39

  40. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) approach [Schaefer et al. 2006] ! Restrict( A x ( ⋅ ) (to(similarity( 40

  41. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) approach [Schaefer et al. 2006] ! Restrict( A x ( ⋅ ) (to(similarity( a b & # M $ ! = $ ! x b a − % " 41

  42. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) approach [Schaefer et al. 2006] ! Restrict( A x ( ⋅ ) (to(rigid( 42

  43. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) approach [Schaefer et al. 2006] ! Restrict( A x ( ⋅ ) (to(rigid( a b ( & # ( M $ ! = ( $ ! x b a − ( % " Solve(for( M x (like( similarity(and(then( normalize( 43

  44. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) approach [Schaefer et al. 2006] ! Examples) 44

  45. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07] ! No#linear#expression#for#similarity#in#3D# ! Instead,#can#solve#for#the#minimizing#rota;on# # k 2 arg min w ( x ) R p q ∑ − # i i i R SO ( 3 ) ∈ i 1 = # #by#polar#decomposi;on#of#the#3 × 3#covariance# matrix## 45

  46. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07] ! Zhu$and$Gortler$also$replace$the$Euclidean$ distance$in$the$weights$by$“distance$within$ the$shape”$ w i ( x ) = d ( p i , x ) –2 α $ $ $ $ $ $ $$ 46

  47. As-Rigid-As-Possible Deformation Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07] ! More%results% % % % % % %% 47

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend