1 z transform the step re sponse to obtain y s z
play

1. Z-transform the step re- sponse to obtain Y s ( z ) . Discrete - PowerPoint PPT Presentation

s to Z-Domain Transfer Function 1. 1. Z-transform the step re- sponse to obtain Y s ( z ) . Discrete ZOH Signals 2. Divide the result from above by Z-transform of a step, namely, z/ ( z 1) . 1. Get step response G a ( s ) :


  1. s to Z-Domain Transfer Function 1. 1. Z-transform the step re- sponse to obtain Y s ( z ) . Discrete ZOH Signals 2. Divide the result from above by Z-transform of a step, namely, z/ ( z − 1) . 1. Get step response • G a ( s ) : Laplace transfer of continuous trans- function fer function y s ( t ) . • G ( z ) : Z-transfer function 2. Discretize step re- sponse: y s ( nT s ) . G ( z ) = z − 1 L − 1 G a ( s ) � � Z z s Step Response Equivalence = ZOH Equivalence 1 Digital Control Kannan M. Moudgalya, Autumn 2007

  2. Important Result from Differentiation 2. Recall ∞ z 1( n ) a n ↔ a n z − n , � z − a = n =0 Differentiating w.r.t. a , ∞ z na n − 1 z − n � ( z − a ) 2 = n =0 z na n − 1 1( n ) ↔ ( z − a ) 2 2 z n ( n − 1) a n − 2 1( n ) ↔ ( z − a ) 3 2 Digital Control Kannan M. Moudgalya, Autumn 2007

  3. ZOH Equivalence of 1 /s 3. The step response of Taking Z-transforms 1 /s is 1 /s 2 . In time T s z Y s ( z ) = domain, it is, ( z − 1) 2 y s ( t ) = L − 1 1 s 2 = t Divide by z/ ( z − 1) , to get the ZOH equivalent Sampling it with a pe- discrete domain transfer riod of T s , function y s ( nT s ) = nT s T s G ( z ) = z − 1 3 Digital Control Kannan M. Moudgalya, Autumn 2007

  4. ZOH Equivalence of 1 /s 2 4. The step response of Take Z-transform 1 /s 2 is 1 /s 3 . In time Y s ( z ) = T 2 s z ( z + 1) domain, it is, 2( z − 1) 3 y s ( t ) = L − 1 1 s 3 = 1 2 t 2 . Dividing by z/ ( z − 1) , we get Sampling it with a pe- G ( z ) = T 2 s ( z + 1) riod of T s , 2( z − 1) 2 y s ( nT s ) = 1 2 n 2 T 2 s 4 Digital Control Kannan M. Moudgalya, Autumn 2007

  5. ZOH Equivalent First Order Transfer Function 5. Find the ZOH equivalent of K/ ( τs + 1) . � � Y s ( s ) = 1 K 1 1 τs + 1 = K s − s + 1 s τ � 1 − e − t/τ � y s ( t ) = K , t ≥ 0 � 1 − e − nT s /τ � y s ( nT s ) = K , n ≥ 0 Kz (1 − e − T s /τ ) z z � � Y s ( z ) = K = z − 1 − z − e − T s /τ ( z − 1)( z − e − T s /τ ) Dividing by z/ ( z − 1) , we get G ( z ) = K (1 − e − T s /τ ) z − e − T s /τ 5 Digital Control Kannan M. Moudgalya, Autumn 2007

  6. ZOH Equivalent First Order Transfer Function 6. - Example Sample at T s = 0 . 5 Scilab output is, and find ZOH equivalent 0 . 9546 G ( z ) = trans. function of z − 0 . 9048 10 = 10(1 − e − 0 . 1 ) G a ( s ) = 5 s + 1 z − e − 0 . 1 Scilab Code: In agreement with the Ga = tf(10,[5 1]); formula in the previous G = ss2tf(dscr(Ga,0.5)); slide 6 Digital Control Kannan M. Moudgalya, Autumn 2007

  7. Discrete Integration 7. y ( k ) = blue shaded area u ( n ) + red shaded area u ( k − 1) y ( k ) = y ( k − 1) + red shaded area u ( k ) y ( k ) = y ( k − 1) + T s 2 [ u ( k ) + u ( k − 1)] n Take Z-transform: Y ( z ) = z − 1 Y ( z ) + T s U ( z ) + z − 1 U ( z ) � � 2 Bring all Y to left side: Y ( z ) − z − 1 Y ( z ) = T s U ( z ) + z − 1 U ( z ) � � 2 (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z ) 7 Digital Control Kannan M. Moudgalya, Autumn 2007

  8. Transfer Function for Discrete Integration 8. Recall from previous slide Im ( z ) (1 − z − 1 ) Y ( z ) = T s 2 (1 + z − 1 ) U ( z ) × Re ( z ) 1 + z − 1 Y ( z ) = T s 1 − z − 1 U ( z ) 2 1 s ↔ T s z + 1 = T s z + 1 z − 1 U ( z ) 2 z − 1 2 Integrator has a transfer function, G I ( z ) = T s z + 1 2 z − 1 A low pass filter! 8 Digital Control Kannan M. Moudgalya, Autumn 2007

  9. Derivative Mode 9. • Integral Mode: 1 s ↔ T s z + 1 2 z − 1 • Derivative Mode: s ↔ 2 z − 1 T s z + 1 • High pass filter • Has a pole at z = − 1 . Hence produces in partial fraction expansion, a term of the form z z + 1 ↔ ( − 1) n • Results in wildly oscillating control effort. 9 Digital Control Kannan M. Moudgalya, Autumn 2007

  10. Derivative Mode - Other Approximations 10. Backward difference: y ( k ) = y ( k − 1) + T s u ( k ) (1 − z − 1 ) Y ( z ) = T s U ( z ) 1 z Y ( z ) = T s 1 − z − 1 = T s z − 1 U ( z ) 1 z s ↔ T s z − 1 Forward difference: y ( k ) = y ( k − 1) + T s u ( k − 1) (1 − z − 1 ) Y ( z ) = T s z − 1 U ( z ) z − 1 T s Y ( z ) = T s 1 − z − 1 U ( z ) = z − 1 U ( z ) 1 T s s ↔ z − 1 Both derivative modes are high pass, no oscillations, same gains 10 Digital Control Kannan M. Moudgalya, Autumn 2007

  11. PID Controller 11. Proportional Mode: Most popular control mode. Increase in proportional mode generally results in • Decreased steady state offset and increased oscillations Integral Mode: Used to remove steady state offset. Increase in integral mode generally results in • Zero steady state offset • Increased oscillations Derivative Mode: Mainly used for prediction purposes. Increase in derivative mode generally results in • Decreased oscillations and improved stability • Sensitive to noise The most popular controller in industry. 11 Digital Control Kannan M. Moudgalya, Autumn 2007

  12. PID Controller - Basic Design 12. Let input to controller by E ( z ) and output from it be U ( z ) . If gain is K , τ i is integral time and τ d is derivative time, � t e ( t ) + 1 de ( t ) � � u ( t ) = K e ( t ) dt + τ d τ i dt 0 U ( s ) = K (1 + 1 τ i s + τ d s ) E ( s ) = S c ( s ) △ U ( s ) R c ( s ) E ( s ) If integral mode is present, R c (0) = 0 . Filtered derivative mode: � � 1 + 1 τ d s u ( t ) = K τ i s + e ( t ) 1 + τ d s N N is a large number, of the order of 100. 12 Digital Control Kannan M. Moudgalya, Autumn 2007

  13. Reaction Curve Method - Ziegler Nichols Tun- 13. ing • Applicable only to stable systems • Give a unit step input to a stable system and get 1. the time lag after which the system starts responding ( L ), 2. the steady state gain ( K ) and 3. the time the output takes to reach the steady state, after it starts responding ( τ ) R = K /τ K L τ 13 Digital Control Kannan M. Moudgalya, Autumn 2007

  14. Reaction Curve Method - Ziegler Nichols Tun- 14. ing R = K /τ K L τ • Let the slope of the response be calculated as R = K τ . Then the PID settings are given below: K p τ i τ d P 1/RL PI 0.9/RL 3L PID 1.2/RL 2L 0.5L Consistent units should be used 14 Digital Control Kannan M. Moudgalya, Autumn 2007

  15. Stability Method - Ziegler Nichols Tuning 15. Another way of finding the PID tuning parameters is as follows. • Close the loop with a proportional controller • Gain of controller is increased until the closed loop system becomes unstable • At the verge of instability, note down the gain of the controller ( K u ) and the period of oscillation ( P u ) • PID settings are given below: K p τ i τ d P 0 . 5 K u PI 0 . 45 K u P u / 1 . 2 PID 0 . 6 K u P u / 2 P u / 8 Consistent units should be used 15 Digital Control Kannan M. Moudgalya, Autumn 2007

  16. Design Procedure 16. A common procedure to design discrete PID controller: • Tune continuous PID controller by any popular technique • Get continuous PID settings • Discretize using the method discussed now or the ZOH equiv- alent method discussed earlier • Direct digital design techniques 16 Digital Control Kannan M. Moudgalya, Autumn 2007

  17. 2-DOF Controller 17. y r T c u G = B R c A − S c R c u = T c r − S c y R c R c It is easy to arrive at the following relation between r and y . y = T c B/A BT c r = r R c 1 + BS c /AR c AR c + BS c Error e , given by r − y is given by BT c r = AR c + BS c − BT c � � e = 1 − r AR c + BS c AR c + BS c 17 Digital Control Kannan M. Moudgalya, Autumn 2007

  18. Offset-Free Tracking of Steps with Integral 18. E ( z ) = A ( z ) R c ( z ) + B ( z ) S c ( z ) − B ( z ) T c ( z ) R ( z ) A ( z ) R c ( z ) + B ( z ) S c ( z ) z − 1 A ( z ) R c ( z ) + B ( z ) S c ( z ) − B ( z ) T c ( z ) z n →∞ e ( n ) = lim lim z A ( z ) R c ( z ) + B ( z ) S c ( z ) z − 1 z → 1 Because the controller has an integral action, R c (1) = 0 : e ( ∞ ) = S c ( z ) − T c ( z ) � = S c (1) − T c (1) � � S c ( z ) S c (1) � z =1 This condition can be satisfied if one of the following is met: T c = S c T c = S c (1) T c (1) = S c (1) 18 Digital Control Kannan M. Moudgalya, Autumn 2007

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend