1 1
play

1 1 Negishi Coupling Substrate Study With Pd-PEPPSI-IPent - PowerPoint PPT Presentation

Designing a Catalyst for Cross-Coupling Pd o L n R 1 - R 2 R 1 - X (electrophile) Reductive Oxidative Elimination Addition electron poor electron rich sterically large sterically small R 1 - Pd ll L n R 1 - Pd ll L n CHM-4328 R 2 X


  1. Designing a Catalyst for Cross-Coupling Pd o L n R 1 - R 2 R 1 - X (electrophile) Reductive Oxidative Elimination Addition electron poor electron rich sterically large sterically small R 1 - Pd ll L n R 1 - Pd ll L n CHM-4328 R 2 X Transmetallation Tactics and Strategies for the Construction of Complex Natural Products electron poor R 2 - M Designing Catalysts sterically small (nucleophile) For Cross-Coupling • What are the ideal catalyst properties for this cycle? • Ligand (L) properties are key to facilitate suitable properties of Pd Guest Lecturer: • Properties that promote one step are apt to disfavour another Michael G. Organ • For activity, it is important to maintain ‘reasonable’ TS barriers for all steps January 31, 2017 • Problems become exacerbated when some form of selectivity is required 1 2 Designing a Catalyst for Cross-Coupling Is Bigger Bigger? • Compare Pd-PEPPSI-IPr with Pd-PEPPSI-IPent : • Phosphanes R R Cy R Pd P R P N N N N Cy Pd R Cl Pd Cl Cl Pd Cl P R R R N N • Phosphanes have moderate σ -donating ability Cl Cl • The most reactive phosphanes are hindered and quite inflexible Pd-PEPPSI-IPr Pd-PEPPSI-IPent • N-heterocyclic carbenes (NHC) R R N N R R Pd • NHCs have strong σ -donating ability (Tolman analysis, Nolan) • NHCs project their bulk toward the metal (buried bulk, Nolan) • Most reactive NHCs have ‘flexible steric bulk’ (Glorius) 3 4 1 1

  2. Negishi Coupling Substrate Study With Pd-PEPPSI-IPent Suzuki-Miyaura Coupling Substrate Study With Pd-PEPPSI-IPent Pd-PEPPSI (2 mol %) Pd-PEPPSI (2 mol %) Ar-Br BrMgAr X n ZnAr Ar - Ar KO t Bu, t BuOH, 65 o C, 24 h R 1 - B(OH) 2 R - R 1 ZnX 2 (equiv) NMP, 2.5h, R - Cl + (equiv) Temp, Time THF, RT, 20 min. (2 equiv) O O O ArMgBr (1.6 equiv) O ArMgBr (1.2 equiv) ZnBr 2 (1.6 equiv) Si ZnCl 2 (1.4 equiv) 50 o C, 8h IPent: 70 % IPent: 61 % IPent: 65 % IPent: 49 % IPent: 80 % 40 o C, 24h ArMgBr (1.6 equiv) ArMgBr (1.2 equiv) IPr : 34 % IPr: <2 % IPr: 0 % IPr: 0 % IPr: 34 % IPr: 0 % ZnBr 2 (1.6 equiv) IPent : 73 %, ZnCl 2 (1.4 equiv) ArMgBr (1.2 equiv) IPent : 94 %, 50 o C, 24h 0 o C, 8h RT, 16h ZnCl 2 (1.4 equiv) 0 o C, 8h O IPr : 13 %, IPent : 80 % IPent : 99 % IPent : 90 % RT, 4h F IPent : 80 % IPent : 85 % O HO O N OH H 2 N IPent: 78 % IPent: 95 % IPent: 95 % IPent: 88 % IPent: 89 % ArMgBr (2.6 equiv) IPr: 32 % IPr: 47 % IPr: 0 % IPr: 0 % ArMgBr (1.2 equiv) ZnBr 2 (3.0 equiv) ArMgBr (1.6 equiv) 50 o C, 24h ZnCl 2 (1.6 equiv), 50 o C, 16h, ZnCl 2 (1.4 equiv), NaH (1.0 equiv) • Pd-PEPPSI-IPent is more reactive than Pd-PEPPSI-IPr 50 o C, 24h, IPr : 43 %, IPent : 80 % IPr : 1 %, IPent : 57 % IPr : 43 %, IPent : 80 % 5 6 Organ, M. G.; Çalimsiz, S; Sayah, M.; Hoi, K. H. Angew. Chem. Int. Ed. 2009 , 48 , 2383-2387. • Hindered biaryls accessible at room temperature - and even lower! Cross-Coupling With Secondary Alkylzincs Cross-Coupling With Secondary Alkylzincs If R 2 << R 1 (H) this is the lower energy • Top 100 Drugs by 2011 US Retail Sales: Pd-alkyl and thermodynamic sink R-X R O OH OH SO 2 Me H Pd o L n Pd ll L n oxidative N N reductive PhHN N R 1 addition elimination OH CO 2 H N R 2 N CO 2 H R R 1 R Pd ll L n R Pd ll L n migratory R OH OH O R 1 F insertion R 2 Lipitor (Pfizer) Effexor (Pfizer) Crestor (AstraZeneca) R 2 H X R 1 transmetallation • Molecules with higher sp 3 content are gaining in interest in drug discovery R 2 • Fraction of sp 3 C: at discovery stage: 0.36 ; H L of successful drugs: 0.47 (a 31% increase!) Pd R 1 ZnX R • Greater binding specificity and improved bioavailability relative to biaryls R 1 ZnX 2 β -hydride R 2 elimination R 2 Lovering, F. et al J. Med. Chem . 2009 , 52 , 6752; Med. Chem. Commun . 2013 , 4 , 515 Problem: there are few ways to quickly and reliably install alkyl groups onto • Catalyst must be designed to favour RE over BHE aromatic systems, especially when the desired substituent is secondary . • What about catalyst size? A larger ligand should favour RE Solution: Cross-coupling of secondary alkyls? 7 8 2 2

  3. Cross-Coupling With Secondary Alkylzincs Cross-Coupling With Secondary Alkylzincs • Test Reactions with Isopropylzinc Bromide and Aromatic Halides: • What about electronic effects? • An electron poor Pd centre should favour reductive elimination Pd-PEPPSI cat. Br (1 mol%) + + R R R BrZn O O Cl Cl THF / Toluene, branched (B) linear (L) RT, 30 min. (normal) (rearranged) N N N N N N Cl Pd Cl Cl Pd Cl Cl Pd Cl Ar-Br Cat Yield B:L Ar-Br Cat Yield B:L N N N Cl Cl Cl 4-CO 2 CH 3 IPr 99 6 : 1 3-OCH 3 IPr 31 3.5 : 1 Pd-PEPPSI-IPr Cl Pd-PEPPSI-IPr Quino Pd-PEPPSI-IPr IPent 98 40 : 1 IPent 57 34 : 1 Cl Cl 4-OCH 3 IPr 89 2.5 : 1 2-CN IPr 99 1 : 8 N N N N IPent 95 33 : 1 IPent 80 2.4 : 1 Cl Pd Cl Cl Pd Cl 3-CN IPr 77 1 : 1.4 2-OCH 3 IPr 99 1 : 9 N N IPent 84 11 : 1 IPent 46 2 : 1 Cl Cl Pd-PEPPSI-IPent Cl Pd-PEPPSI-IPent • Pd-PEPPSI-IPent resists β -hydride elimination / migratory insertion 9 10 Cross-Coupling With Secondary Alkylzincs Cross-Coupling With Secondary Alkylzincs • Are the causative effects actually electronic in origin? • What about electronic effects? • Tolman Electronic Parameter Analysis (Schrock, Nolan) Pd-PEPPSI cat. Br (1 mol%) X X X X + + R R R R R BrZn R 1. KO t Bu (1.2 equiv.) R R R R R THF / Toluene, THF, RT, 2h N N N N branched (B) linear (L) RT, 30 min. (+) 2. [(COD)IrCl)] 2 (0.5 equiv.) (normal) (rearranged) R R R R RT, 24 h Ir R R R R Cl CO 3. CO (g) , CH 2 Cl 2 , RT, 1h Ar-Br Cat Yield B:L Ar-Br Cat Yield B:L CO ν CO (CH 2 Cl 2 , cm - 1 ) ν CO (avg) Entry NHC Selectivity TEP (cm - ) [a] 3-CN IPr 82 1 : 1.4 2-CN IPr 58 1 : 6.6 1 IPr 1 : 1.4 2066.8, 1981.0 2023.9 2051.5 [b] IPr Cl 81 14.7 : 1 IPr Cl 66 4.3 : 1 2 IPr Cl 14.7 : 1 2071.4, 1985.1 2028.3 2054.0 [b] IPr Quino 78 13.4 : 1 IPr Quino 70 8.5 : 1 3 IPr Quino 13.4 : 1 2073.7, 1987.3 2030.5 2057.1 IPent 66 10.5 : 1 IPent 80 2.4 : 1 4 IPr Me 15 : 1 2064.5, 1978.2 2021.3 2049.3 IPent Cl 81 56 : 1 IPent Cl 56 27.1 : 1 5 IPent 10.5 : 1 2064.7, 1978.6 2021.7 2049.6 6 IPent Cl 56 : 1 2069.3, 1982.2 2025.8 2053.0 • The installation of electron-withdrawing substituents on the imidazolium [a] TEP = TEP computed using the linear regression: TEP (cm-1) = 0.8475*( ν CO(avg)) + 336.2; core dramatically impacts β -hydride elimination / migratory insertion [b] Organometallics 2008 , 27 , 202-210. 11 12 3 3

  4. Cross-Coupling With Secondary Alkylzincs Cross-Coupling With Secondary Alkylzincs • OK, if it is not electronic (entirely at least), then what is it? • OK, if it is not electronic (entirely at least), then what is it? R R N N Cl Pd Cl N Cl • Two critical transition states (TS) R R R R N N N N Pd Pd H Ph Ph • Increasing the steric bulk around Pd has the greatest impact on BHE 13 14 Reductive Elimination TS Beta-Hydride Elimination TS Cross-Coupling With Secondary Alkylzincs Cross-Coupling With Secondary Alkylzincs • Reaction scope • Limitation: 5-membered ring heterocycles Pd-PEPPSI-IPent Cl Pd-PEPPSI-IPent Cl (2 mol %) (2 mol %) Ar - X + secAlkyl - ZnX Ar - secAlkyl Ar - X + secAlkyl - ZnX Ar - secAlkyl (1.2 equiv) THF / Toluene, (1.2 equiv) THF / Toluene, Ph RT, 30 min RT, 30 min S O O S O O N N S N OCH 3 S 3 N N N 3 N Boc 3 3 1 2 2 2 2 1 1 1 X = Br, (94 %) X = Cl, (99 %) X = Cl, 5 h, (99%) X = Br, 4 h, (84 %) X = Br, (86 %) X = Br, (88 %) X = Br, (88 %) X = Br, (56 %) N : R, > 99 : 1 N : R, > 99 : 1 N : R, >99 : 1 N : R, > 99 : 1 C3 : C2, > 2.4 : 1 C3 : C2 : C1, > 0.5 : 1 : 0.2 C3 : C2 : C1, > 0.2 : 0.7 : 1 C3 : C2, > 1.2 : 1 O O O • What is different with these systems that drives migratory insertion? N H N H • Due to bond angles, steric effects have been reduced OH F N N Pd-PEPPSI-IPent Cl Boc ZnBr Boc (2.2 equiv. RZnBr) (2 mol %) X = Cl, 16h (88 %) X = Cl, 24 h, (67%) X = Cl, 4 h, (84 %) X = Br, (98 %) + 3 N : R, >99 : 1 N : R, 56 : 1 N : R, > 99 : 1 N : R, > 99 : 1 THF / Toluene, 2 Br • All single isomers - zero isomerization! RT, 30 min (1.2 equiv) 1 C3 only isomer (95 %) • Effect appears not to be steric in origin Pompeo, M.; Hadei, N.; Froese, R. D. J.; Organ, M. G. Angew. Chem. Int. Ed. 2012 , 51 , 11354 –11357. 15 16 4 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend