09 designing surfaces
play

09 - Designing Surfaces CSCI-GA.2270-001 - Computer Graphics - Fall - PowerPoint PPT Presentation

09 - Designing Surfaces CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo Triangular Surfaces A surface can be discretized by a collection of points and triangles Each triangle is a subset of a plane Every point on the


  1. 09 - Designing Surfaces CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  2. Triangular Surfaces • A surface can be discretized by a collection of points and triangles • Each triangle is a subset of a plane • Every point on the surface can be expressed as an affine combination of three vertices • The surface is C 0 CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  3. Barycentric Coordinates • The points inside a triangle, are usually parametrized using barycentric coordinates w : v 3 v 1x v 2x v 3x w 1 p x = v 1y v 2y v 3y w 2 p y p 1 1 1 w 3 1 v 2 v 1 • The barycentric coordinates naturally defines a parametrization CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  4. Tensor Surfaces CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  5. Bilinear Interpolation • Linear interpolation • “Simplest” curve between two points Isoparametric curve • Bilinear interpolation • “Simplest” surface between four points 1 1 X X b i,j B 1 i ( u ) B 1 x ( u, v ) = j ( v ) i =0 j =0 � ✓ ◆ ✓ ◆ b 00 b 01 1 − v � Domain 1 − u u = b 10 b 11 v CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  6. Bilinear Interpolation • Linear interpolation • “Simplest” curve between two points • Bilinear interpolation • “Simplest” surface between four points b 01 00 = (1 − v ) b 00 + vb 01 b 01 10 = (1 − v ) b 10 + vb 11 b 00 11 = (1 − u ) b 01 00 + ub 01 10 CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  7. Bézier Patches • Build on Bézier curves b 20 b 21 b 10 m b 23 b 11 X b m ( u ) = b i B m i ( u ) i =0 b 33 • Control points as curves n b 13 X b ij B n b i = b i ( v ) = j ( v ) b 00 j =0 m n b 03 X X b mn ( u, v ) = b ij B m i ( u ) B n j ( v ) i =0 j =0 • Keep one parameter fixed: iso-parameter curves CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  8. Properties • Affine invariance CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  9. Properties • Affine invariance • Repeated (bi-)linear combinations • Convex hull property CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  10. Properties • Affine invariance • Repeated (bi-)linear combinations • Convex hull property • Partition of unity and non-negativity • Polynomial boundary curves and corner interpolation CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  11. Properties • Affine invariance • Repeated (bi-)linear combinations • Convex hull property • Partition of unity and non-negativity • Polynomial boundary curves and corner interpolation • Variation diminishing CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  12. Properties • Affine invariance • Repeated (bi-)linear combinations • Convex hull property • Partition of unity and non-negativity • Polynomial boundary curves and corner interpolation • Variation diminishing CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  13. De Casteljau Algorithm • Bézier curves created by repeated linear interpolation • Surfaces: repeated bilinear interpolation CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  14. Demo http://cagd-applets.webarchiv.kit.edu/mocca/html/noplugin/inhalt.html CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  15. NURBS Surfaces j w i,j d i,j N m i ( u ) N n � � j ( v ) i x ( u, v ) = j w i,j N m i ( u ) N n � � j ( v ) i • Standard in most advanced modeling systems projection of tensor product patches ≠ tensor product surface! (basis is not separable) CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  16. NURBS Surfaces • Standard in most advanced modeling systems CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  17. NURBS Surfaces • Influence of weights CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  18. NURBS Surfaces • Influence of weights CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  19. NURBS Surfaces • Influence of weights CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  20. NURBS Surfaces • Influence of weights CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  21. Subdivision Surfaces CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  22. Why? • Tensor product surfaces are defined on “regular grids” • They cannot be defined on arbitrary meshes CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  23. A different way of constructing curves! CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  24. Interpolating: 4 point scheme CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  25. Interpolating: 4 point scheme CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  26. Interpolating: 4 point scheme CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  27. Interpolating: 4 point scheme CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  28. Catmull-Clark scheme odd even Converges to cubic B-spline CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  29. Subdivision Methods • Principal characteristics: • triangular or quadrangular meshes • approximating or interpolating • smoothness of the limit surface • We will study 2 of them: • Loop subdivision for triangle meshes (Approximating, C 2 ) • Catmull-Clark subdivision for quadrilateral meshes (Approximating, C 2 ) • Other famous schemes (see the references for details) • Butterfly, Kobbelt, Doo-Sabin, Midedge, Biquartic CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  30. Loop subdivision w ( n ) = 5 8 − (3 8 + 1 4 cos 2 π n ) 2 CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  31. Special stencils • Special stencils exist that allow to evaluate: • The limit position of a vertex : that is, in a single step you can compute the position of one vertex after an infinite number of subdivisions • The tangent plane at a vertex : in this case, two stencils are used and each stencil generates a vector that lies in the tangent plane • It is also possible to evaluate the surface analytically, in other words it is possible to find the mapping between every point of the control mesh and the limit surface. For details see http://www.autodeskresearch.com/publications/loopsubdiv CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  32. Catmull Clark subdivision 3 β = 2 N On a regular grid, the Catmull clark 1 subdivision is a collection of bicubic γ = 4 N Bézier patches CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  33. Catmull-Clark • It is the standard in the animation industry • All the major 3D modeling softwares support it • Similarly to Loop: • stencils for the limit surface • stencils for tangent plane • it can be evaluated analytically CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  34. How are they used in practice? CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  35. Efficient implementation • At every subdivision step, we add new vertices and move the existing ones in new positions • Every position is computed as a weighted average of existing vertices • This means that the process is linear! • For a fixed number of levels of subdivision, the vertices of subdivided surface can be computed as: Subdivided vertices p = Sq Control vertices • where S is a sparse and fixed matrix CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  36. T-spline • Extension of splines for non-rectangular grids • http://www.youtube.com/watch?v=k1ro9S-cAwI CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  37. References Fundamentals of Computer Graphics, Fourth Edition 4th Edition by Steve Marschner, Peter Shirley Chapter 15 Curves and Surfaces for CAGD - Gerald Farin Subdivision Zoo - Denis Zorin http://www.cmlab.csie.ntu.edu.tw/~robin/courses/gm/note/subdivision-prn.pdf CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  38. Projective Transformations CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  39. Viewing Transformation camera space screen space object space model camera projection viewport canonical world space view volume CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  40. Orthographic Projection camera space y (r,t,f) z (l,b,n) x projection − r + l 2  0 0  r − l r − l − t + b 2 0 0   t − b t − b M orth =   − n + f 2 0 0   n − f n − f 0 0 0 1 canonical view volume CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  41. Perspective Projection • In Orthographic projection, the size of the objects does not change with distance • In Perspective projection, the objects that are far away look smaller Image Plane Image Plane y y s d y s = dy z z CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

  42. Divisions in Matrix Form • We would like to reuse the matrix machinery that we built in the previous lectures y s = dy Image Plane • How do we encode divisions? z • We extend homogeneous coordinates y y s d z CSCI-GA.2270-001 - Computer Graphics - Fall 17 - Daniele Panozzo

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend