0
play

-----------------------0 .- EN P ERGY I ~i~c~f :: ! Fermi lab - PowerPoint PPT Presentation

FERMILAB-SLIDES-19-008-CD -----------------------0 .- EN P ERGY I ~i~c~f :: ! Fermi lab Neutrino Experiment Simulation Overview Michael Kirby, Fermilab/Scientific Computing Division Mar 20, 2019 Thomas Jefferson National Accelerator Facility


  1. FERMILAB-SLIDES-19-008-CD -----------------------0 .- EN P ERGY I ~i~c~f :: ! Fermi lab Neutrino Experiment Simulation Overview Michael Kirby, Fermilab/Scientific Computing Division Mar 20, 2019 Thomas Jefferson National Accelerator Facility This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics

  2. Outline Big thanks to Laura Fields, Alex Himmel, Mary Bishai, Tao Lin, • outlook on precision measurements in neutrino oscillations Rob Kutschke, Krzysztof • where simulations come into the picture Genser, Jen Raaf, Gabe Perdue, Renee Fatemi, and • simulation of neutrino beam fluxes and systematics Leah Welty-Reiger for help with • neutrino interaction event generators and cross sections this talk. They deserve the • detector simulation with GEANT4 credit. All mistakes are mine. • slight diversion about other IF experiments at Fermilab Sanford Unde~~round Research Fac1hty Fermilab C= Fermilab � 2

  3. Neutrino Simulations in the era of oscillations • Many neutrino experiments have measurement of neutrino oscillation parameters as their primary goal 140 35 DUNE v. appearance DUNE v. appearance 3.5 years (staged) 3.5 years (staged) Normal MH, 6cP=0 Normal MH, 6cP=0 120 30 - Signal (v 0 +v 0 ) CC - Signal (v 0 +v 0 ) CC 100 > 25 > - Beam (v 0 +v 0 ) CC - Beam (v 0 +v 0 ) CC Q) Q) C, C, - NC - NC 80 20 LO LO - (v,+v,) CC - (v,+v, )CC "! "! -- -- - (vµ+vµ )CC - (vµ+vµ )CC 0 0 en en c c 15 Q) Q) > > w w 0 2 3 7 8 2 3 Reconstructed Enerqy (GeV) Reconstructed Energy (GeV) Oscillation Probability Neutrino Interaction Efficiency / Smearing Flux Cross Section Function ------------------------------- CFermilab � 3

  4. ~ Neutrino Simulations in the era of oscillations • Mass ordering, CP-violation, mixing matrix unitarity 0 C • precision measurements of oscillation 
 Normalized by area 9 parameters requires accurate simulation 
 8 of detector response and efficiency K2K @ Neutrino 2002 7 Koichiro Nishikawa 6 Oscillation Probability 5 4 Neutrino Interaction Efficiency / Smearing 3 Flux Cross Section Function 2 • interaction cross sections & detector uncertainties 
 have significant impact on the potential reach 
 O O 0 .5 1 1.5 2 2.5 3 3 .5 4 4 .5 5 of oscillation experiments E • beam fluxes dominant uncertainty for measurements 
 of interaction cross sections and event yields ------------------------------- CFermilab Laura Fields � 4

  5. -r1 - ◊c p= 2 Neutrino Simulations in the era of oscillations DUNE vµ disappearance 3.5 years (staged) • Mass ordering, CP-violation, mixing matrix unitarity - Signal v" CC - NC • precision measurements of oscillation 
 - (v,+v, )CC - Bkgd vµ CC parameters requires accurate simulation 
 of detector response and efficiency Oscillation Probability 2 3 4 5 6 7 8 Reconstructed Energy ( GeV ) CP Violation Sensitivity Neutrino Interaction Efficiency / Smearing DUNE Se nsitivity 14 Normal Ordering - 50% of S C P values sin22 01 = 0.085 ± 0.003 - 75% of OcP values 3 Flux Cross Section Function . . .. .. 5% $ 1% .441 ± 12 sin 2 0 23 ;;; O O . O42 - Nominal : 5% EB 2% " '" '"'"' 5 °/4 $ 3% • interaction cross sections & detector uncertainties 
 have significant impact on the potential reach 
 II tl of oscillation experiments • beam fluxes dominant uncertainty for measurements 
 of interaction cross sections and event yields 200 400 600 800 1000 1200 1400 Exposure (kt-MW-years) CFermilab Laura Fields � 5

  6. ► Beam simulations and neutrino flux • Hadron production: NuMI Beam based up production models from hadrons l l l Muon Monitors Target Hall exiting the targets and ~ bsorber o _ eca _~_ P_ ipe ___ r ___ -- \ ___ _ Target from secondary and --- - - - - - u ,, tertiary interactions in the - - - -+ Protons from uµ µ• Main Injector Hom 2 Hom 1 horn, decay pipe, etc - - --- + u ,, 1 0m 3 0m 6 75 m • horn focusing: particle S m ii-;; 18m 2 10m Hadron Monitor propagation through Rock magnetic fields and • simulate proton beam (8-120 GeV) incident on targets (thin, thick, C, Be) alignment of the horn • elements T2K Beam Simulation: FLUKA 2011.2c -> GEANT3+GCALOR • • other subdominant MINERvA Beam Simulation: GEANT4 for production and simulation effects: gas in the decay – developed the ppfx package for hadron production uncertainties pipe, absorber material, • Booster Neutrino Beam: GEANT4 based tools developed by MiniBooNE 
 decay pipe windows used by MicroBooNE, SBND, ICARUS • near detectors help minimize uncertainty for oscillation measurements - not a silver bullet CFermilab � 6

  7. ~ CADMesh utilized by the Muon g-2 Experiment • Translates CAD files into GDML for simulation in GEANT • allows for precise shape and location of detector components without recreation in GDML by hand • does require greater precision than engineers are sometimes focused on • gaps in volumes and overlapping volumes can be serious problems in GEANT 100 10 Q) E F 1 • CPU • ClockTime Leah Welty-Reiger, Renee Fatemi 0.1 1 10 100 1000 10000 ____::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::i C Ferm ilab Number of Events � 7

  8. ~ CADMesh utilized by the Muon g-2 Experiment • Translates CAD files into GDML for simulation in GEANT • allows for precise shape and location of detector components without recreation in GDML by hand • does require greater precision than engineers are sometimes focused on • gaps in volumes and overlapping volumes can be serious problems in GEANT 100 10 Q) E F 1 • CPU • ClockTime Leah Welty-Reiger, Renee Fatemi 0.1 1 10 100 1000 10000 ____::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::i C Ferm ilab Number of Events � 8

  9. ~ 1 ~ ~ T2K Beam simulation • hadron interactions are the greatest source of uncertainty for the flux prediction • constrain the pion production using NA61/SHINE, HARP datasets ND280: Neutrino Mode, vµ - - Hadron In teractions -- Material Mcxle ling 0.94 < cos0 < 0.98 0.98 < cos0 < 1.0 0.3 -- ProtonBeamProfile&Off - axi s Angle -- NumberofProtons - Data Statistical Uncertainty -- Hom Current & Field -- Thin Tuning Total .... - -- Ho rn & Targ et Alignment - Flux+Background+Pion FSI 0 V Cl> xEv, Arb. Norm. t=10-1 0.2 Q) - Detector v-mode "iii 5 10 -2 n - Signal Modeling II,, 0.1 U..10 -3 - ProtonFSI - Mass 1()-' L... ............ ._ ................................. ..... 10-' 0.0 10 -" 10-" 10-' 10 10 10 Ev (GeV) pµ pµ [GeV/c] [GeV/c] true true Nulnt2018 T. Vlaclisavl1ev1c • neutrino flux uncertainty dominates the measurement of CC0 π production • this is the golden channel for measuring oscillation parameters - cleanest incident neutrino energy determination CFermilab � 9

  10. ➔ - ■-■- :,. ,. n X ➔ nC - KX ➔ • pC • • • r X pC MINERvA Beam Simulation ~ab~•- ~-7 - o :t: he ~ r 0.16 - J: I ~ P ~ h~ ys ~- ~ R ~ e ~ v~ . D ~ 9 =: 4 ::: , ::: 0= 9= 20 =0 =. 5 === {2 = 0 = 1 =~=~ - ~ - meson inc. - target abs. • Hadron production model variation dominant effect for 0.14 • ••. nucleon-A 1/) ••• • pC ➔ nucleonX - others ~0 .12 C -total HP determining the uncertainty "iii "li3 0.1 u – use data from NA49, MIPP to tune the flux §0 .00 ........ : •••••••••• ·- - -·· •• ·- ••••• _, •• • 1 •• ·• •••• • ••• ..... – scale 158 GeV proton data to 120 GeV using FLUKA -~r- - ··-. ...................................... – incorporated into Package to Predict the Flux (PPFX) . 8 .. ,- ;~ - :' ." ";" ~ -- --- i: ---- ~ - ~ -- 18 6 20 2 4 Neutrino Energy (GeV) • still dominate uncertainty in most of the MINERvA V + A ➔ µ· + 7t+ + A x10· 39 µ measurements 2 - = Total Sys. Error = - Dete ctor Model ~n~:;;:ti~: s: :~: ~ ::~:band Model • pioneering measurements to constrain the flux using • ~==j - Tracking Eff - Vertex ~ En ~•= neutrino scattering off electrons measurements - but suffers from limited statistics • cross sections measurements important inputs for improving neutrino interaction models and predictions 5 10 15 20 Neutrino Energy (GeV) Deepika Jena, NuINT 2018 CFermilab � 10

  11. Neutrino Interactions Simulation Quasi'elas0c" Lots%of%interes+ng%(nuclear)%physics%over%all%energy%ranges.% (QE)" ν μ" μ '" A. Schukraft, G. Zeller / GeV) MicroBooNE 1.4 W" Many%open%ques+ons% need%experimental%&% p +" n" 1.2 theore+cal%input!% 2 cm 1 -38 Resonance" (10 TOTAL (RES)" 0.8 ν ν μ" μ '" cross section / E QE 0.6 π +" W" DIS 0.4 n" Δ +" RES 0.2 n" Deep"inelas0c" ν 0 -1 2 (DIS)" 10 10 1 10 ν μ" μ '" E (GeV) T2K ν W" NOvA n" X " DUNE � 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend