0 1
play

0-1 Solving inverse problem Model Metric g Q Qbar potencal - PowerPoint PPT Presentation

Machine learning landscape workshop, ICTP Trieste, 10 Dec 2018 East Asian string workshop, KIAS, Seoul, 7 Nov 2018 KMI colloquium, Nagoya U, 25 Oct 2018 QG meets la\ce QCD workshop, ECT*, Trento, 3 Sep 2018 APCTP focus program,


  1. “Machine learning landscape” workshop, ICTP Trieste, 10 Dec 2018 East Asian string workshop, KIAS, Seoul, 7 Nov 2018 KMI colloquium, Nagoya U, 25 Oct 2018 “QG meets la\ce QCD workshop”, ECT*, Trento, 3 Sep 2018 APCTP focus program, Hanyang U, Seoul, 15 Aug 2018 QFT workshop, YITP, Kyoto, 31 July 2018 Deep Learning and Holographic QCD � Koji Hashimoto (Osaka u) ArXiv:1802.08313, 1809.10536 w/ S. Sugishita (Kentucky), A. Tanaka (RIKEN), A. Tomiya (RIKEN)

  2. 0-1 � Solving inverse problem � Model � Metric � g µ ν Q Qbar potencal � La\ce QCD data: chiral condensate Prediccon VS quark mass � Deep Learning � Experiment Experiment data � data � [RBC-Bielefeld collaboracon, 2008] (Courtesy of W.Unger) [Petreczky, 2010]

  3. 0-2 � Discre1zed QG space1me? � Quantum gravity, discreczed � Causal dynamical triangulacon � [Ambjorn, Loll 1998] AdS/MERA � [Swingle 2009] HaPPY code � [Pastawski, Yoshida, Harlow, Preskill 2015]

  4. 0-3 � Neural network as a space1me � AdS/CFT [Maldacena ‘97] � Deep neural network � Black hole AdS (Emergent spacecme) CFT

  5. 1. Formulacon of AdS/DL correspondence � 2. Deeply learning QCD

  6. 1-1 � AdS/CFT: quantum response from geometry � [Klebanov, Wioen] � Classical scalar field theory in (d+1) dim. geometry � � � d d +1 x ( ∂ η φ ) 2 − V ( φ ) � � S = − det g ds 2 = − f ( η ) dt 2 + d η 2 + g ( η )( dx 2 1 + · · · + dx 2 d − 1 ) AdS boundary ( ) : � f ∼ g ∼ exp[2 η /L ] η ∼ ∞ Black hole horizon ( ) : � f ∼ η 2 , g ∼ const. η ∼ 0 Solve EoM, get response . Boundary condicons: � � O � J AdS boundary ( ) : � η ∼ ∞ 1 φ = Je − ∆ − η + � O � e − ∆ + η ∆ + � ∆ − Black hole horizon ( ) : � � ∂ η φ η =0 = 0 η ∼ 0 �

  7. 1-2 � Deep learning : op1mized sequen1al map � Layer 2 � Layer N � Layer 1 � x ( N ) x (1) x (2) i = ϕ ( W (1) ij x (1) j ) i i F = f i x ( N ) i W (1) ϕ ( x ) ij “Accvacon funccon” (fixed nonlinear fn.) � “Weights” (variable linear map) � { x (1) 1) Prepare many sets : input + output i , F } 2) Train the network (adjust ) by lowering W ij � � “Loss funccon” � � f i ( ϕ ( W ( N − 1) ϕ ( · · · ϕ ( W (1) � lm x (1) � � m )))) − F E ≡ � � ij � data

  8. 1-3 � Neural network of AdS scalar � η φ + h ( η ) ∂ η φ − δ V [ φ ] Bulk EoM � ∂ 2 = 0 δφ � � � metric � h ( η ) ≡ ∂ η log f ( η ) g ( η ) d − 1 Discreczacon, Hamilton form � φ ( η + ∆ η ) = φ ( η ) + ∆ η π ( η ) � � h ( η ) π ( η ) − δ V ( φ ( η )) π ( η + ∆ η ) = π ( η ) + ∆ η δφ ( η ) Neural-Network representacon � φ π � η =0 = 0 π � η η = 0 η = ∞

  9. 1-4 � Dic1onary of AdS/DL correspondence � AdS/CFT � Deep learning � Emergent space � Depth of layers � ∞ > η ≥ 0 i = 1 , 2 , · · · , N Bulk gravity metric � Network weights � W ( a ) h ( η ) ij Nonlinear response � Input data � x (1) � O � J i Horizon condicon � Output data � � ∂ η φ η =0 = 0 F � Interaccon � Accvacon funccon � ϕ ( x ) V ( φ )

  10. 1. Formulacon of AdS/DL correspondence � 2. Deeply learning QCD

  11. 0-3 � Solving inverse problem � Model � Metric � g µ ν Q Qbar potencal � La\ce QCD data: chiral condensate Prediccon VS quark mass � Deep Learning � Experiment Experiment data � data � [RBC-Bielefeld collaboracon, 2008] (Courtesy of W.Unger) [Petreczky, 2010]

  12. 2-1 � Deeply learning QCD � 1) Use a QCD data. 2) Let the network learn the metric. 3) Calculate other physical quancces. ��

  13. 2-1 � Deeply learning QCD � 1) Use a QCD data. 2) Let the network learn the metric. 3) Calculate other physical quancces. Chiral condensate VS quark mass. � Pick up β=3.33 data � Posicve data β=3.30 ó T=196[MeV] [RBC-Bielefeld collaboracon, 2008] Negacve data � (Courtesy of W.Unger) ��

  14. 2-1 � Deeply learning QCD � 1) Use a QCD data. 2) Let the network learn the metric. 3) Calculate other physical quancces. Map it to asymptocc scalar configuracon. � [Klebanov, Wioen] [DaRold,Pomarol][Karch,Katz,Son,Stephanov] [Cherman,Cohen,Werbos] � � N c � � N c � 3 π qq � e − 3 η � λ 4 π m q e − η + η e − 3 η 2 � N c � ¯ φ = 4 π m q 2 • Conformal dimension of is 3. � ¯ qq � • Sub-leading contribucon, present. • Everything measured in unit of AdS radius. ��

  15. 2-2 � Deeply learning QCD � 1) Use a QCD data. 2) Let the network learn the metric. 3) Calculate other physical quancces. asymptocc horizon � AdS � φ input m q � ¯ qq � π ( η = 0) π input Klebanov-Wioen Unspecified metric , h ( η ) decomposicon coupling (to be trained) � λ ��

  16. 2-2 � Deeply learning QCD � 1) Use a QCD data. 2) Let the network learn the metric. 3) Calculate other physical quancces. φ input m q � ¯ qq � π ( η = 0) π input QCD la\ce data � ��

  17. 2-2 � Deeply learning QCD � 1) Use a QCD data. 2) Let the network learn the metric. 3) Calculate other physical quancces. � � � f ( η ) g ( η ) d − 1 h ( η ) ≡ ∂ η log Learned value of (AdS radius) -1 : 1/L = 237(3)[MeV] bulk coupling : λ/L = 0.0127(6) � ��

  18. 2-3 � Deeply learning QCD � 1) Use a QCD data. 2) Let the network learn the metric. 3) Calculate other physical quancces. Q Qbar potencal � Learned metric � f ( η ) g ( η ) 3 Procedures η based on [Maldacena] [Rey,Theisen,Yee] � Bump � Quantum gravity effect? � Cf [Hyakutake 2014] �

  19. 2-3 � Deeply learning QCD � 1) Use a QCD data. 2) Let the network learn the metric. 3) Calculate other physical quancces. Q Qbar potencal � [Petreczky, 2010] [T.Ishikawa et al., 2008, CPPACS + JLQCD collaboracon]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend