0 1 polytopes with quadratic chv atal rank
play

0/1 Polytopes with Quadratic Chv atal Rank Thomas Rothvo and - PowerPoint PPT Presentation

0/1 Polytopes with Quadratic Chv atal Rank Thomas Rothvo and Laura Sanit` a 3rd Cargese Workshop on Combinatorial Optimization b b b b b b b b b b b b b b b b Gomory Chv atal Cuts Given: Polytope P R n P b b


  1. 0/1 Polytopes with Quadratic Chv´ atal Rank Thomas Rothvoß and Laura Sanit` a 3rd Cargese Workshop on Combinatorial Optimization

  2. b b b b b b b b b b b b b b b b Gomory Chv´ atal Cuts ◮ Given: Polytope P ⊆ R n P

  3. b b b b b b b b b b b b b b b b Gomory Chv´ atal Cuts ◮ Given: Polytope P ⊆ R n ◮ Want: Integral hull P P I := conv { P ∩ Z n } P I

  4. b b b b b b b b b b b b b b b b Gomory Chv´ atal Cuts ◮ Given: Polytope P ⊆ R n ◮ Want: Integral hull P P I := conv { P ∩ Z n } ◮ Idea: Let cx ≤ β valid inequality for P ( c ∈ Z n ) P I cx ≤ β

  5. b b b b b b b b b b b b b b b b Gomory Chv´ atal Cuts ◮ Given: Polytope P ⊆ R n ◮ Want: Integral hull P P I := conv { P ∩ Z n } ◮ Idea: Let cx ≤ β valid inequality for P ( c ∈ Z n ) ◮ The Gomory Chv´ atal cut cx ≤ ⌊ β ⌋ valid for P I P I cx ≤ β cx ≤ ⌊ β ⌋

  6. b b b b b b b b b b b b b b b b Gomory Chv´ atal Cuts ◮ Given: Polytope P ⊆ R n ◮ Want: Integral hull P P I := conv { P ∩ Z n } ◮ Idea: Let cx ≤ β valid inequality for P ( c ∈ Z n ) P ′ ◮ The Gomory Chv´ atal cut cx ≤ ⌊ β ⌋ valid for P I P I cx ≤ β cx ≤ ⌊ β ⌋ ◮ Gomory Chv´ atal closure � � P ′ = { all GC cuts for P } = { x | cx ≤ ⌊ max { cy | y ∈ P }⌋} c ∈ Z n

  7. b b b b b b b b b b b b b b b b Gomory Chv´ atal Cuts ◮ Given: Polytope P ⊆ R n ◮ Want: Integral hull P P I := conv { P ∩ Z n } ◮ Idea: Let cx ≤ β valid inequality for P ( c ∈ Z n ) P ′ ◮ The Gomory Chv´ atal cut cx ≤ ⌊ β ⌋ valid for P I P I cx ≤ β cx ≤ ⌊ β ⌋ ◮ Gomory Chv´ atal closure � � P ′ = { all GC cuts for P } = { x | cx ≤ ⌊ max { cy | y ∈ P }⌋} c ∈ Z n ◮ k th closure P ( k ) := P ′′′ . . . ′ � �� � k times

  8. b b b b b b b b b b b b b b b b Gomory Chv´ atal Cuts ◮ Given: Polytope P ⊆ R n ◮ Want: Integral hull P P I := conv { P ∩ Z n } ◮ Idea: Let cx ≤ β valid inequality for P ( c ∈ Z n ) P ′ ◮ The Gomory Chv´ atal cut cx ≤ ⌊ β ⌋ valid for P I P I cx ≤ β cx ≤ ⌊ β ⌋ ◮ Gomory Chv´ atal closure � � P ′ = { all GC cuts for P } = { x | cx ≤ ⌊ max { cy | y ∈ P }⌋} c ∈ Z n ◮ k th closure P ( k ) := P ′′′ . . . ′ � �� � k times atal rank: P (rk( P )) = P I ◮ Chv´

  9. What’s known

  10. What’s known ◮ For each rational polyhedron P , rk( P ) < ∞

  11. b b b b b b b b b b b b b b b b b b b b What’s known ◮ For each rational polyhedron P , rk( P ) < ∞ ◮ But for every k , there is P ⊆ R 2 with rk( P ) ≥ k (0 , 1) ( k, 1 2 ) P (0 , 0)

  12. b b b b b b b b b b b b b b b b b b b b What’s known ◮ For each rational polyhedron P , rk( P ) < ∞ ◮ But for every k , there is P ⊆ R 2 with rk( P ) ≥ k (0 , 1) ( k, 1 2 ) P (0 , 0) ◮ For the rest of the talk assume P ⊆ [0 , 1] n

  13. What’s known — if P ⊆ [0 , 1] n ◮ rk( P ) ≤ O ( n 3 log n ) [Bockmayer, Eisenbrand, Hartmann, Schulz ’98]

  14. What’s known — if P ⊆ [0 , 1] n ◮ rk( P ) ≤ O ( n 3 log n ) [Bockmayer, Eisenbrand, Hartmann, Schulz ’98] O ( n 2 log n ) ◮ rk( P ) ≤ [Eisenbrand, Schulz ’99]

  15. What’s known — if P ⊆ [0 , 1] n ◮ rk( P ) ≤ O ( n 3 log n ) [Bockmayer, Eisenbrand, Hartmann, Schulz ’98] O ( n 2 log n ) ◮ rk( P ) ≤ [Eisenbrand, Schulz ’99] ◮ For some P , rk( P ) ≥ (1 + ε ) n [Eisenbrand, Schulz ’99]

  16. What’s known — if P ⊆ [0 , 1] n ◮ rk( P ) ≤ O ( n 3 log n ) [Bockmayer, Eisenbrand, Hartmann, Schulz ’98] O ( n 2 log n ) ◮ rk( P ) ≤ [Eisenbrand, Schulz ’99] ◮ For some P , rk( P ) ≥ (1 + ε ) n [Eisenbrand, Schulz ’99] ◮ For some P , rk( P ) ≥ 1 . 36 n [Pokutta, Stauffer ’11]

  17. What’s known — if P ⊆ [0 , 1] n ◮ rk( P ) ≤ O ( n 3 log n ) [Bockmayer, Eisenbrand, Hartmann, Schulz ’98] ◮ rk( P ) ≤ O ( n 2 log n ) [Eisenbrand, Schulz ’99] ◮ For some P , rk( P ) ≥ (1 + ε ) n [Eisenbrand, Schulz ’99] ◮ For some P , rk( P ) ≥ 1 . 36 n [Pokutta, Stauffer ’11]

  18. What’s known — if P ⊆ [0 , 1] n ◮ rk( P ) ≤ O ( n 3 log n ) [Bockmayer, Eisenbrand, Hartmann, Schulz ’98] ◮ rk( P ) ≤ O ( n 2 log n ) [Eisenbrand, Schulz ’99] ◮ For some P , rk( P ) ≥ (1 + ε ) n [Eisenbrand, Schulz ’99] ◮ For some P , rk( P ) ≥ 1 . 36 n [Pokutta, Stauffer ’11] Theorem (Sanit` a, R. ’12) There exists a family of polytopes P ⊆ [0 , 1] n with Chv´ atal rank rk( P ) ≥ Ω( n 2 ).

  19. The polytope cx = 1 2 � c � 1

  20. The polytope ◮ Let c ∈ Z n ≥ 0 be a vector � x ∈ { 0 , 1 } n : cx ≤ � c � 1 � P ( c ) := conv 2 � �� � Knapsack solutions cx = 1 2 � c � 1

  21. The polytope ◮ Let c ∈ Z n ≥ 0 be a vector � x ∈ { 0 , 1 } n : cx ≤ � c � 1 � P ( c ) := conv 2 � �� � Knapsack solutions ( 1 2 , . . . , 1 2 ) cx = 1 2 � c � 1

  22. The polytope ◮ Let c ∈ Z n ≥ 0 be a vector � � x ∈ { 0 , 1 } n : cx ≤ � c � 1 � � { x ∗ ( ε ) } P ( c, ε ) := conv ∪ 2 � �� � � �� � special vertex Knapsack solutions x ∗ ( ε ) = ( 1 2 + ε, . . . , 1 2 + ε ) P ( 1 2 , . . . , 1 2 ) P I cx = 1 2 � c � 1

  23. Critical vectors ◮ Call ˜ c maximized at x ∗ c critical ⇔ ˜ x ∗ ( ε ) P

  24. Critical vectors ◮ Call ˜ c maximized at x ∗ c critical ⇔ ˜ ˜ c x ∗ ( ε ) P

  25. Critical vectors ◮ Call ˜ c maximized at x ∗ c critical ⇔ ˜ cx ≤ ⌊ β ⌋ cuts of x ∗ = ◮ ˜ ⇒ ˜ c critical ˜ c x ∗ ( ε ) P

  26. b b b b b b b b b b b b b b b b b b Critical vectors ◮ Call ˜ c maximized at x ∗ c critical ⇔ ˜ cx ≤ ⌊ β ⌋ cuts of x ∗ = ◮ ˜ ⇒ ˜ c critical 0 P

  27. b b b b b b b b b b b b b b b b b b Critical vectors ◮ Call ˜ c maximized at x ∗ c critical ⇔ ˜ cx ≤ ⌊ β ⌋ cuts of x ∗ = ◮ ˜ ⇒ ˜ c critical ˜ c 0 P

  28. b b b b b b b b b b b b b b b b b b Critical vectors ◮ Call ˜ c maximized at x ∗ c critical ⇔ ˜ cx ≤ ⌊ β ⌋ cuts of x ∗ = ◮ ˜ ⇒ ˜ c critical ˜ c ∼ ε 0 P

  29. Overview

  30. Overview ⇒ Ω( n 2 ) rank critical vectors are long =

  31. Overview critical vectors are good Simultaneous Diophantine Approximations to c ⇒ Ω( n 2 ) rank critical vectors are long =

  32. Overview random vector has no short, good SDA critical vectors are good Simultaneous Diophantine Approximations to c ⇒ Ω( n 2 ) rank critical vectors are long =

  33. A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) .

  34. A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) . b ε 0 P (0)

  35. A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) . b ε 0 b ε 1 P (1)

  36. A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) . b ε 0 b ε 1 b ε 2 P (2)

  37. b A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) . b ε 0 b ε 1 b ε 2

  38. b b A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) . b ε 0 b ε 1 b ε 2

  39. b b A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) . b ε 0 b ε 1 b ε 2 b ε k

  40. b b b b A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) . b ε 0 x ∗ ( ε i ) x ∗ ( ε i +1 ) b ε k

  41. b b b b b A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) . b ε 0 x ∗ ( ε i ) x ∗ ( ε i +1 ) b ε k cx ≤ β ˜ ◮ Let ˜ cx ≤ β be the GC cut “cutting furthest” in it. i

  42. b b b b b b A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) . b ε 0 x ∗ ( ε i ) x ∗ ( ε i +1 ) b ε k cx ≤ β ˜ cx ≤ ⌊ β ⌋ ˜ ◮ Let ˜ cx ≤ β be the GC cut “cutting furthest” in it. i

  43. b b b b b b A lower bound strategy Theorem Assume: ∀ ε ∈ [( 1 2 ) Θ( n ) , Θ(1)] : c � 1 ≥ Ω( n c critical = ˜ ⇒ � ˜ ε ) . Then rk ( P ) ≥ Ω( n 2 ) . b ε 0 x ∗ ( ε i ) x ∗ ( ε i +1 ) b ε k cx ≤ β ˜ cx ≤ ⌊ β ⌋ ˜ ◮ Let ˜ cx ≤ β be the GC cut “cutting furthest” in it. i cx ∗ ( ε i ) − ˜ cx ∗ ( ε i +1 ) ˜

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend