convex hull of a random point set
play

Convex hull of a random point set Pierre Calka Journ ees - PowerPoint PPT Presentation

Convex hull of a random point set Pierre Calka Journ ees nationales 2016 GdR Informatique Math ematique Villetaneuse , 20 January 2016 default Outline Random polytopes: an overview Main results: variance asymptotics Case of the ball:


  1. Convex hull of a random point set Pierre Calka Journ´ ees nationales 2016 GdR Informatique Math´ ematique Villetaneuse , 20 January 2016

  2. default Outline Random polytopes: an overview Main results: variance asymptotics Case of the ball: sketch of proof and scaling limit Case of a simple polytope: sketch of proof and scaling limit Joint works with Joseph Yukich (Lehigh University, USA) & Tomasz Schreiber (Toru´ n University, Poland)

  3. default Outline Random polytopes: an overview Poisson point process Uniform case Gaussian case Expectation asymptotics Main results: variance asymptotics Case of the ball: sketch of proof and scaling limit Case of a simple polytope: sketch of proof and scaling limit

  4. default Binomial point process ◮ K convex body �� �� �� �� � � µ probability measure on K � �� �� � �� �� �� �� ( X i , i ≥ 1) independent µ -distributed variables � � � � �� �� B 4 B 1 � � � E n = { X 1 , · · · , X n } ( n ≥ 1) � � � �� �� �� �� �� �� ◮ Number of points in B 1 � B 2 � � B 3 � � #( E n ∩ B 1 ) binomial variable � � � � � � � �� �� � � n � µ ( B 1 ) k (1 − µ ( B 1 )) n − k , P (#( E n ∩ B 1 ) = k ) = k 0 ≤ k ≤ n ◮ #( E n ∩ B 1 ) , · · · , #( E n ∩ B ℓ ) not independent ( B 1 , · · · , B ℓ ∈ B ( R 2 ), B i ∩ B j = ∅ , i � = j )

  5. default Poisson point process Poisson point process with intensity measure µ : �� �� locally finite subset P of R d such that �� �� � � � �� �� � �� �� �� �� ◮ #( P ∩ B 1 ) Poisson r.v. of mean µ ( B 1 ) � � � � �� �� B 4 B 1 P (#( P ∩ B 1 ) = k ) = e − µ ( B 1 ) µ ( B 1 ) k k ! , k ∈ N � � � � � � �� �� �� �� �� �� ◮ #( P ∩ B 1 ) , · · · , #( P ∩ B ℓ ) independent � � B 2 ( B 1 , · · · , B ℓ ∈ B ( R d ), B i ∩ B j = ∅ , i � = j ) � � B 3 � � � � � �� �� � If µ = λ d x , P said homogeneous of intensity λ

  6. default Uniform case Binomial model K := convex body of R d ( X k , k ∈ N ∗ ):= independent and uniformly distributed in K K n := Conv( X 1 , · · · , X n ), n ≥ 1 K 50 , K ball K 50 , K square

  7. default Uniform case Binomial model K := convex body of R d ( X k , k ∈ N ∗ ):= independent and uniformly distributed in K K n := Conv( X 1 , · · · , X n ), n ≥ 1 K 100 , K ball K 100 , K square

  8. default Uniform case Binomial model K := convex body of R d ( X k , k ∈ N ∗ ):= independent and uniformly distributed in K K n := Conv( X 1 , · · · , X n ), n ≥ 1 K 500 , K ball K 500 , K square

  9. default Uniform case Poisson model K := convex body of R d P λ , λ > 0 := Poisson point process of intensity measure λ d x K λ := Conv( P λ ∩ K ) K 500 , K ball K 500 , K square

  10. default Gaussian case Poisson model (2 π ) d / 2 e −� x � 2 / 2 , x ∈ R d , d ≥ 2 1 ϕ d ( x ) := P λ , λ > 0 := Poisson point process of intensity measure λϕ d ( x ) d x K λ := Conv( P λ ) K 100 K 500

  11. default Considered functionals ◮ f k ( · ): number of k -dimensional faces, 1 ≤ k ≤ d ◮ Vol ( · ): volume, V d − 1 ( · ): half-area of the boundary ◮ V k ( · ): k -th intrinsic volume, 1 ≤ k ≤ d The functionals V k are defined through Steiner formula: d � r d − k κ d − k V k ( K ) , where κ d := Vol ( B d ) Vol ( K + B (0 , r )) = k =0 d = 2: A ( K + B (0 , r )) = A ( K ) + P ( K ) r + π r 2

  12. default Expectation asymptotics � � 1 − E Vol ( K n − 1 ) B. Efron’s relation (1965): E f 0 ( K n ) = n Vol ( K ) d − 1 1 Uniform case, K smooth E [ f k ( K λ )] ∼ d s λ � d +1 d +1 c d , k ∂ K κ s λ →∞ κ s := Gaussian curvature of ∂ K d , k F ( K ) log d − 1 ( λ ) Uniform case, K polytope E [ f k ( K λ )] ∼ c ′ λ →∞ F ( K ) := number of flags of K d − 1 2 ( λ ) Gaussian polytope E [ f k ( K λ )] ∼ d , k log c ′′ λ →∞ A. R´ enyi & R. Sulanke (1963), H. Raynaud (1970), R. Schneider & J. Wieacker (1978), F. Affentranger & R. Schneider (1992)

  13. default Outline Random polytopes: an overview Main results: variance asymptotics Uniform case, K smooth Gaussian polytopes Uniform case, K simple polytope Case of the ball: sketch of proof and scaling limit Case of a simple polytope: sketch of proof and scaling limit

  14. default Uniform case, K smooth: state of the art ◮ Identities relating higher moments C. Buchta (2005): d − 1 d +1 ≤ Var [ f 0 ( K λ )] c λ ◮ Number of faces and volume M. Reitzner (2005): d − 1 d − 1 d +1 ≤ Var [ f k ( K λ )] ≤ C λ c λ d +1 ◮ Intrinsic volumes I. B´ ar´ any, F. Fodor & V. Vigh (2009): c λ − d +3 d +1 ≤ Var [ V k ( K λ )] ≤ C λ − d +3 d +1 ◮ Central limit theorems M. Reitzner (2005): � t � � f k ( K λ ) − E [ f k ( K λ )] e − x 2 / 2 d x ≤ t → √ . P � Var [ f k ( K λ )] 2 π λ →∞ −∞

  15. default Uniform case, K smooth: limiting variances K := convex body of R d with volume 1 and with a C 3 boundary κ := Gaussian curvature of ∂ K � λ →∞ λ − ( d − 1) / ( d +1) Var [ f k ( K λ )] = c k , d κ ( z ) 1 / ( d +1) dz lim ∂ K � λ →∞ λ ( d +3) / ( d +1) Var [ Vol ( K λ )] = c ′ κ ( z ) 1 / ( d +1) dz lim d ∂ K ( c k , d , c ′ d explicit positive constants) Remarks. ◮ Similar results for the binomial model ◮ Case of the ball: similar results for V k ( K λ ), functional central limit theorem for the defect volume

  16. default Gaussian polytopes: state of the art ◮ Number of faces D. Hug & M. Reitzner (2005) , I. B´ ar´ any & V. Vu (2007): d − 1 d − 1 2 ( n ) ≤ Var [ f k ( K n )] ≤ C log 2 ( n ) c log ◮ Volume I. B´ ar´ any & V. Vu (2007): d − 3 d − 3 2 ( n ) ≤ Var [ Vol ( K n )] ≤ C log 2 ( n ) c log ◮ Central limit theorems I. B´ ar´ any & V. Vu (2007) ◮ Intrinsic volumes D. Hug & M. Reitzner (2005): k − 3 2 ( n ) Var [ V k ( K n )] ≤ C log

  17. default Gaussian polytopes: limiting variances n →∞ log − d − 1 2 ( λ ) Var [ f k ( K λ )] = c d , k ∈ (0 , ∞ ) lim n →∞ log − k + d +3 2 ( λ ) Var [ V k ( K λ )] = c ′ lim d , k ∈ [0 , ∞ ) λ →∞ 1 − k log(log λ ) − 1 log − k / 2 ( λ ) E [ V k ( K λ )] c ′′ + O ((log − 1 ( λ )) = d , k 4 log λ Remarks. ◮ Similar results for the binomial model ◮ Intrinsic volumes: for 1 ≤ k ≤ ( d − 1), c ′ d , k ∈ [0 , ∞ ) ◮ Functional CLT for the defect volume

  18. default Uniform case, K polytope: state of the art ◮ Number of faces and volume I. B´ ar´ any & M. Reitzner (2010) d , k F ( K ) 3 log d − 1 ( λ ) c d , k F ( K ) log d − 1 ( λ ) ≤ Var [ f k ( K λ )] ≤ c ′ c d , k F ( K )log d − 1 ( λ ) d , k F ( K ) 3 log d − 1 ( λ ) ≤ Var [ Vol ( K λ )] ≤ c ′ λ 2 λ 2 ◮ Central limit theorems I. B´ ar´ any & M. Reitzner (2010b)

  19. default Uniform case, K simple polytope: limiting variances K := simple polytope of R d with volume 1 λ →∞ log − ( d − 1) ( λ ) Var [ f k ( K λ )] = c d , k f 0 ( K ) lim λ →∞ λ 2 log − ( d − 1) ( λ ) Var [ Vol ( K λ )] = c ′ lim d , k f 0 ( K )

  20. default Outline Random polytopes: an overview Main results: variance asymptotics Case of the ball: sketch of proof and scaling limit Calculation of the variance of f k ( K λ ) Scaling transform Dual characterization of extreme points Action of the scaling transform Case of a simple polytope: sketch of proof and scaling limit

  21. default Calculation of the expectation of f k ( K λ ) ◮ Decomposition:    � E [ f k ( K λ )] = E ξ ( x , P λ )  x ∈P λ 1 � k +1 # k -face containing x if x extreme ξ ( x , P λ ) := 0 if not ◮ Mecke-Slivnyak formula � E [ f k ( K λ )] = λ B d E [ ξ ( x , P λ ∪ { x } )] d x

  22. default Calculation of the variance of f k ( K λ ) Var [ f k ( K λ )]    − ( E [ f k ( K λ )]) 2  � ξ 2 ( x , P λ ) + � = E ξ ( x , P λ ) ξ ( y , P λ ) x ∈P λ x � = y ∈P λ � B d E [ ξ 2 ( x , P λ ∪ { x } )] d x = λ �� + λ 2 ( B d ) 2 E [ ξ ( x , P λ ∪ { x , y } ) ξ ( y , P λ ∪ { x , y } )] d x d y �� − λ 2 ( B d ) 2 E [ ξ ( x , P λ ∪ { x } )] E [ ξ ( y , P λ ∪ { y } )] d x d y � B d E [ ξ 2 ( x , P λ ∪ { x } )] d x = λ �� + λ 2 ( B d ) 2 ” Cov” ( ξ ( x , P λ ∪ { x } ) , ξ ( y , P λ ∪ { y } )) d x d y

  23. default Scaling transform Question : Limits of E [ ξ ( x , P λ )] and ” Cov” ( ξ ( x , P λ ) , ξ ( y , P λ ))? Answer : definition of limit scores in a new space ◮ Scaling transform : B d − 1 \ { 0 } R d − 1 × R + � − → T λ : 1 2 d +1 exp − 1 d +1 (1 − � x � )) x �− → ( λ d − 1 ( x / � x � ) , λ exp d − 1 : R d − 1 ≃ T u 0 S d − 1 → S d − 1 exponential map at u 0 ∈ S d − 1 ◮ Image of a score : ξ ( λ ) ( T λ ( x ) , T λ ( P λ )) := ξ ( x , P λ ) ◮ Convergence of P λ : T λ ( P λ ) D → P where P := homogeneous Poisson point process in R d − 1 × R of intensity 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend