0 0 09 09 t t viscosity u u plane jet m m
play

0 0 . . 09 09 T ~ T ~ Viscosity u u Plane - PowerPoint PPT Presentation

Outline Introduction to Turbulence Modeling Eddy Viscosity Models Prandtl Mixing Length Model One Equation Model Two-Equation Model Stress Transport Model ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi


  1. Outline  Introduction to Turbulence Modeling  Eddy Viscosity Models  Prandtl Mixing Length Model  One Equation Model  Two-Equation Model  Stress Transport Model ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi Boussinesq             U U U U 2 2 U U U U     Eddy                 j j     2 2   u u u u i i k k u u ~ ~   m  m  Eddy           T T m m i i j j T T ij ij y y x x x x 3 3 y y     Viscosity j j i i Viscosity       1 1 U U U U U U                   2 2         k k u u m u m u u u v v Thin Shear Layer u u v v T  T      m m m m 2 2 y y y y y y Eddy Mixing Length m  m        0 0 . . 09 09   T ~ T ~ Viscosity u u Plane Jet m m m  m      0 0 . . 075 075 Circular Jet Mixing Length  m  Mixing Layer m  m  m     0 0 . . 07 07 ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 1

  2.       2 2 4 4 y y                 Mixing Length Nikuradse 0 0 . . 41 41   y y y y     0 0         y y           m m 0 0 . . 14 14 0 0 . . 08 08 1 1 0 0 . . 06 06 1 1                     r r   r r     r r   Boundary Layer Pipe Flows   0 0 0 0 0 0 m m y y       0  0        0 0 0 0 . . 09 09   0 0        m =0.4 y Nikuradse  m /r o U / U 1 o   / m y / r  y / o  /  1 1 o ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi   U  U    T  T    T  T  Mixing 0 0 0 0 0 0 When   Length y y     0  0  . . 8 8 | | Experiment T T T T max max  Cold U T     0 T T   T  T  Mixing Reattachment 0 0 Hot Point Length Maximum Heat Experiment Transfer ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 2

  3. Turbulence Kinetic Energy 1 1 Kolmogorov-     k k   2 2 T T Prandtl               d d u u u u P P U U                 i i i i   i i k k u u ( ( ) ) u u u u   j j   i i j j   1 1 dt dt x x 2 2 x x     Turbulence       j j j j k k u u i u i u Kinetic Energy i i           2 2 2 2 u u u u k k         i i i i         x x x x x x x x j j j j j j j j ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi Thin Shear Layer 3 3 Dissipation k k 2 2                   dk dk u u u u P P U U c c                   i i i i   v v ( ( ) )   u u v v D D         dt dt y y 2 2 y y     Closed k-Equation   U U           u u v v T  T  3 3 Turbulence Stress 2 2 y y                 dk dk k k U U k k 2 2                 T T c c               T T   D D   dt dt y y   y y     y y             1 1 P P k k k k             Diffusion     v v u u u u T T           i i i i   2 2   y y k k ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 3

  4. Near a Wall Distribution of Length Scale 3 3 3 3 2 2           2 2 2 2 U U k k 2 2 ( ( u u v v ) ) k k 2 2 1 1       1 1     1 1     1 1   U U           U U c c             c c         2 2     u u v v c c 2 2     k k 2 2 c c 2 2   u u v v c c 2 2 k k T T D D   D D   y y     D D       D D   y y   D D y y T T 1 1     2 2 ( ( u u v v ) )       c c   * *   k k 2 2 U U u u D D 2 2   2 2 1 1 1 1 k k         T T * * u u v v u u               c c 4 4 y y c c 4 4 y y y y D D D D m m     c D  c D  u u v v 0 0 . . 07 07 ~ ~ 0 0 . . 08 08     0 0 . . 25 25 ~ ~ 0 0 . . 3 3 k k c D  c D        0 0 . . 08 08   0 0 . . 4 4 0 0 . . 2 2 y y   k  k  1 1 ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi Achievements of the Model  Heat transfer in the heat exchanger  Separated flows Short Comings  Transport of the turbulent length scale  Little advantage over the mixing length ME 639-Turbulence G. Ahmadi ME 639-Turbulence G. Ahmadi 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend