z
play

z nuclear matter with three flavor extended linear sigma model - PowerPoint PPT Presentation

(Central China Normal University) Daiki Suenaga 1/20 Mass Modifications of light mesons in z nuclear matter with three flavor extended linear sigma model Phillip Lakaschus Dirk H. Rischke, Jurgen Schaffner-Bielich (Johann Wolfgang Goethe


  1. (Central China Normal University) Daiki Suenaga 1/20 Mass Modifications of light mesons in z nuclear matter with three flavor extended linear sigma model Phillip Lakaschus Dirk H. Rischke, Jurgen Schaffner-Bielich (Johann Wolfgang Goethe University)

  2. ・Mesons in nuclear matter 1. Introduction 2/20 � ������������������������������������������������������������� related to… (Theoretically) Partial restoration of chiral symmetry, Change of axial anomaly, etc… (Experimentally) Modification of vector mesons experiments Mesic nuclei, etc… � ������������������������������������������������������������������� comprehensively within a chiral model in a unified way

  3. ・Extended Linear Sigma Model (eLSM) 1. Introduction 3/20 � The extended Linear Sigma Model (eLSM) is a chiral model which can reproduce light meson properties successfully D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa, and D. H. Rischke; z PRD 87, 014011 (2013) Includes 9 scalars, 9 pseudo-scalars � 9 vectors, and 9 axial-vectors (and 1 dilaton) � We applied the eLSM into cold nuclear matter reproducing saturation properties and studied mass changes of the mesons in nuclear matter comprehensively

  4. 2. eLSM ・The eLSM 4/20 D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa, z and D. H. Rischke; PRD 87, 014011 (2013) � (2 quark state) meson field is schematically written by q j Φ ij ∼ ¯ R q i �������������������������� L q j q j R ij R γ µ q i L ij L γ µ q i ������������������������� µ ∼ ¯ µ ∼ ¯ R L chiral transformation laws and particle assignment � SU (3) L × SU (3) R Φ → g L Φ g † R R µ → g R R µ g † R L µ → g L L µ g † L

  5. 2. eLSM ・Lagrangian 5/20 D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa, z and D. H. Rischke; PRD 87, 014011 (2013) � The Lagrangian is given by � ���������������� R µ ν = ∂ µ R ν − ieA µ [ T 3 , R ν ] − ∂ ν R µ + ieA ν [ T 3 , R µ ] L µ ν = ∂ µ L ν − ieA µ [ T 3 , L ν ] − ∂ ν L µ + ieA ν [ T 3 , L µ ] � ��������������� D µ Φ = ∂ µ Φ − ig 1 ( L µ Φ − Φ R µ ) − ieA µ [ T 3 , Φ ] ��������������� � Axial anomaly

  6. ・Input parameters 2. eLSM 6/20 D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa, z and D. H. Rischke; PRD 87, 014011 (2013) � �������������������������������

  7. ・Input parameters 2. eLSM 7/20 D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa, z and D. H. Rischke; PRD 87, 014011 (2013) � � ������������������������������ � ���� ����������������������������������������������������������������������� ���������������������������������������������������������

  8. 2. eLSM ・ fitting 8/20 χ 2 D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa, z and D. H. Rischke; PRD 87, 014011 (2013) C 1 = m 2 0 + λ 1 ( φ 2 N + φ 2 S ) 1 + h 1 C 2 = m 2 2 ( φ 2 N + φ 2 S )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend