y p
play

Y P TMS in animal models: O Methods and Applications C T O - PowerPoint PPT Presentation

Y P TMS in animal models: O Methods and Applications C T O Electric current Magnetic N field Electric Coil field O D E S A E Alexander Rotenberg, M.D., Ph.D. L P Director, Neuromodulation Program Boston Childrens Hospital Y


  1. Y P TMS in animal models: O Methods and Applications C T O Electric current Magnetic N field Electric Coil field O D E S A E Alexander Rotenberg, M.D., Ph.D. L P Director, Neuromodulation Program Boston Children’s Hospital

  2. Y TMS in animals P O C T O N O D E S A E L P

  3. Y P Why TMS studies in animals? O C – Basic Science T O – Translational N Research O D E S A E L Poma et al., 2006 P

  4. Y Advantages of animal subject P O C • Subject homogeneity T • Available histology O N • Genetic / disease models O D E S A E L P Liebetanz et al., 2003

  5. Y P Translational Relevance O C • Disease modeling T O • TMS safety N • Neuronal connectivity O • Synaptic plasticity D E • Cortical organization S A E L P Charlet de Sauvage et al. 2007

  6. Y P No injury after prolonged TMS O C • Counter, 1995: T O – No deleterious effect on AEP after 1000 pulses at 1Hz n rabbits N • Nishikiori, 1996: O – No cortical or brainstem lesions after ~1 month of daily D TMS in rabbits E • Liebetanz et al., 2003: S – No MRS or histologic changes after 5 days of 1 Hz rTMS A • Charlet de Sauvage et al., 2007 E – No DNA damage after 2000 TMS pulses L P

  7. Induced dysfunction: neglect following Y P rTMS in cats O C T O N O D E S A E L P Valero Cabre et al., 2005

  8. Frequency ‐ Dependent 14 C ‐ 2DG uptake Y P modulated in cat O C T O 20 Hz on-line N O D 1 Hz on-line E S A E 20 Hz off-line L P Valero-Cabre et al. 2006

  9. Most translational research is with Y P rodents O C • Well ‐ described disease models T • Inexpensive O N • Experiments may be translated to clinical care O • TMS effect can be examined at multiple levels: D whole animal, brain slice, single cell, etc. E S Kistsen et al., in progress A E L P

  10. Y Disadvantages of rat model P O – Compromised stimulus focality C – Slightly more difficult EEG T O – Required restraint or anesthesia N O D E S A Kamida et al., 1998 E L P Luft et al., 2001

  11. Y Stimulation protocols P O C T O N O D E S A E L P Frye, Rotenberg, et al. Child Neurol 2007

  12. Ground EMG Y P O C T O N EMG O D E Off ‐ Center Coil S A E Rotenberg et al., 2009 L P

  13. Lateralized brachioradialis MEP Y P O C T O N O D E S A E L P

  14. Y TMS in a Deployable Automated P O Anesthesia Unit (DAAU) C T O N O D E S A E L P Roteberg, Goldie, Leroy (Vivonics Inc., and Boston Children’s Hospital)

  15. Y Proposed use: a closed loop autonomous P analgesia system O C T O N O D E S A E L P Roteberg, Goldie, Leroy (Vivonics Inc., and Boston Children’s Hospital)

  16. Y P MEP response to propofol bolus O C 0.1 T 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 O ‐ 0.1 MEP amplitude change N ‐ 0.2 (Log %baselne) O ‐ 0.3 D ‐ 0.4 E ‐ 0.5 S ‐ 0.6 A E ‐ 0.7 L ‐ 0.8 P Control 10mg 20mg Gersner et al., in progress

  17. Y P MEP response to propofol rate change O C T Log ‐ transformed 0.2 O MEP amplitude change 0.1 N 0 (Log %baselne) 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103 O ‐ 0.1 D ‐ 0.2 ‐ 0.3 E ‐ 0.4 S ‐ 0.5 A ‐ 0.6 E ‐ 0.7 L ‐ 0.8 P Control 2to1

  18. Y Stimulation protocols P O C T O N O D E S A E L P Frye, Rotenberg, et al. Child Neurol 2007

  19. GABAergic cortical inihibition measures Y P by paired ‐ pulse TMS (ppTMS) O C Conditioning TMS T Paired-pulse MEP inhibition 1 O Test TMS 2 N GABA-mediated O inhibition D E S A 50 ms Rotenberg and Pascual-Leone, 2010 E L P

  20. Y P O C MMG (Mechanomyography) T O N O D E S A E L P Accelerometer

  21. Y EMG vs MMG P O C Input–output curve of MMG 0.15 0.10 T MMG (V) 0.05 O 0.00 -0.05 50ms -0.10 N 60%MO 70%MO 80%MO 90%MO 100%MO -0.15 O D E S EMG (Tibia anterior m.) A E L P MMG

  22. Y GABA A ‐ mediated cortical inhibition following pentobarbital (PB) P and pentylenetetrazole (PTZ) O C 200ms ISI T Saline O PB 80 * PTZ * * % of unconditioned MMG N 60 O D 40 E 20 *** *** *** S Left Right Ave (L+R) A Pre P10 P60 Pre P10 P60 Pre P10 P60 Condition E L reduced inhibition with PTZ and increased inhibition with PB P

  23. Y TBI: The most common cause of acquired epilepsy in P young adults O C Causes of Epilepsy: T O N O D (PTE) E S A E L P Annegers JF. Lippincott Williams & Wilkins, 2001:165-72 .

  24. Y P O C T O N O D E S A E L P

  25. Y Fluid Percussion Injury: a post ‐ traumatic P epilepsy model O C T O N O D E S A Nature Protocols, 2011 E L P McIntosh et al., 1989

  26. Y P Loss of cortical paired ‐ pulse inhibition after TBI O C T 200ms ISI 1.0 Sham control O * TBI N * 0.8 * ** * O * 0.6 Ratio D 0.4 E S 0.2 A E 0.0 L Pre 1WK 2WKS 3WKS 4WKS 5WKS 6WKS P Time

  27. Y General cortical architecture is not affected by TBI P Sham control TBI (contra-lesion) TBI (lesion) O 2 4 6 2 4 6 2 4 6 NeuN I C II/III T O N V O VI D E NeuN S A E L P Hsieh et al., Cerebral Cortex 2016

  28. Y Parvalbumin (PV) interneurons are the major P sub-type of cortical inhibitory neuron… O and vulnerable to oxidative stress C T O N O D E S A E L P Gonchar et al., 2007, Front Neuroanat.

  29. Y Progressive PV loss after TBI P O Post-TBI (contra-lesion) Sham control Post-TBI (peri-lesion) C 2 4 2 4 6 2 4 6 6 PV I T O II/III N V O VI D Peri-lesion Contra-lesion * E *** S n.s. n.s. * *** A E L P

  30. Y Delayed increase in oxidative stress after TBI P (8-oxo-DG) O Sham control Post-TBI (peri-lesion) Post-TBI (contra-lesion) 2 4 6 2 4 6 2 4 6 C 8-oxo-dG I T II/III O N V O VI D Peri-lesion Contra-lesion E *** n.s. ** *** n.s. S A n.s. E L P

  31. Disruption of perineuronal nets (PNN) after TBI Y P O C T O N O D E S A E L P

  32. Y P O C T O N O D E S A E L P

  33. Y Ceftriaxone treatment prophylaxes against P posttraumatic seizures O C T O N O D E S A E L P

  34. Y ppTMS as a biomarker in TBI treatment P O C T O N O D E S A E L P Hameed et al., in progress

  35. Y Ipsilesional Parvalbumin Expression after TBI P O C T 2 weeks 4 weeks 6 weeks O N * * O D E S A E L P * p<0.05

  36. Y Implications for Therapy P O Antioxidant C (N ‐ acetylcysteine) T Neuroprotection Oxidative stress O (Otx2) N O ↓ Otx2 ↓ Perineuronal nets Impaired inhibition D E TBI Loss of PV ‐ cells S PTE A E Epileptic seizure L P Lee et al., 2013

  37. Y Stimulation protocols P O C T O N O D E S A E L P Frye, Rotenberg, et al. Child Neurol 2007

  38. Y P O C T O N O D E S A E L P

  39. Y P Rat “ deep ” TMS during seizure O C electric current T magnetic field coil O electric field N O D E EEG analysis torso strap restraints S (seizure detection) A E L P

  40. Y rTMS during KA seizure P O C T O N O D E S A E L P Rotenberg et al., Clin Neurophys 2008

  41. rTMS during KA seizures Y P 150% O C 125% Relative Average Seizure Duration T O (% untreated control) 100% N * O * 75% D E 50% S A 25% E L P 0% untreated active sham untreated active sham untreated active sham 0.25 Hz 0.5 Hz 0.75 Hz Rotenberg et al., 2008

  42. Combination therapy: lorazepam + rTMS in seizure suppression Y P ½ LZP + ½ LZP ½ LZP + rTMS ½ LZP + Sham O Baseline C LZP T O 2 nd treatment N O Follow-up D 1.4 E 30 sec Normalized spike frequency (auto-count) 1.2 S ½ LZP + sham TMS ½ LZP + ½ LZP 1 A ½ LZP + rTMS 0.8 E 0.6 L 0.4 P ** *** 0.2 0 Gersner et al., 2016. 2 nd Treatment BL 1st 2nd FU Baseline LZP Follow-up

  43. Better seizure suppression in Y P humans with 1 Hz O C % reduction in Seizure Frequency After rTMS T 150 O N 100 O D c 50 h a E n g 0 e S A E -50 L P -100 0. 3 0. 5 1 H z Rotenberg et al., unpublished data

  44. Y Frequency ‐ response in vitro LTD P O approximates rTMS data C T O N O D E S A E L P Nakano et al., 2004

  45. Y P Molecular Basis: Does rTMS induce LTP/LTD? O C T O N O D E S A E L P Kandel, 2001

  46. Y Can 1 Hz TMS suppresses motor excitability P rats anesthetized with pentobarbital ? O C * T O N O 1 S1 0.5 S0.5 0.25 S0.25 Stimulation Condition (Hz) D E S A E L Reduced cortical P excitability Muller et al., PLOS One 2014

  47. Y P O C T O N O D E S A E L P

  48. Y P rTMS mechanisms O C T O N O D E S A E L P Kandel, 2001

  49. Y P CREB phosphorylation by 20 Hz rTMS O C 300% T O 250% pCREB (% control) N 200% O 150% D 100% E 50% S 0% A 20 Hz rTMS Sham E L P 20 Hz rTMS Sham

  50. Y P rTMS mechanisms O C T O N O D E S A E L P Kandel, 2001

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend