x ray reflectivity and grazing incidence small angle x
play

X-ray reflectivity and Grazing Incidence Small Angle X-Ray - PowerPoint PPT Presentation

X-ray reflectivity and Grazing Incidence Small Angle X-Ray Scattering G. Renaud, CEA-Grenoble, France Dpartement de Recherche Fondamentale sur la Matire Condense Service de Physique des Matriaux et des Microstructures And ESRF, BM32


  1. X-ray reflectivity and Grazing Incidence Small Angle X-Ray Scattering G. Renaud, CEA-Grenoble, France Département de Recherche Fondamentale sur la Matière Condensée Service de Physique des Matériaux et des Microstructures And ESRF, BM32 beamline grenaud@cea.fr European School on Magnetism New Experimental Aproaches in Magnetism Constantza, Romania, Sept 7-16, 2005

  2. Introduction Nanoparticles , nanowires, thin films and multilayers… have New physical properties (e.g. magnetic, but also electronic, catalytic or photonic) Atomic structure, size, shape & organization Growth conditions & Morphology, temperature … of the substrate surface X-ray complementary to Near Field Microscopy • non destructive - statistical information over mm scale • depth sensitivity, from 20 Å up to several mm • length scale probed : from a few Å to mm • quantitative analysis • following in-time: deposit – annealing – gas adsorption • in situ , in UHV, during growth (and sometimes in real time) • no charge effects : insulating samples (single crystal oxide substrates)

  3. X-Ray Scattering k f k i = − = vector of the reciprocal space q k k G f i hkl Explores Reciprocal Space

  4. Reciprocal Space of nanostructures deposited on a substrate substrate CTR On-site M rod q ┴ α 1/a ┴ diffraction by adsorbate a // A a ┴ A (333) (113) ∆ q // / q // ~ ∆ a // / a // a ┴ S d // a // S (002) (222) ATOMIC STRUCTURE Of NANOPARTICLES (111) (331) Relaxed M (000) q // α ( h 2 + k 2 ) 1/2 α 1/a // Crystal Truncation Rods: (220) interference with adsorbate GISAXS Specular ==> site, d interf . reflectivity z d REGISTRY, i.e. MORPHOLOGY r (z) location of adsorbate at the nm – 100 nm scale D

  5. Grazing Incidence Small Angle Grazing Incidence X-ray X-ray Scattering ( GISAXS) Scattering GIXS (or GID) and X-R Reflectivity (XRR) Structure @ atomic scale Morphology @ nanometer scale • Structure, composition • Shape (facets, equilibrium shape) • Dimensions • Epitaxial relashionships • Size distributions • Relaxation • Organization – Coherent • Growth mode – Incoherent (dislocations) • Density profile • Registry / substrate lattice • Thin film thickness • Intermixing with substrate • Interface roughness • Substrate distortions • Buried layers • ... • ...

  6. Nanostructures (nanoparticles, nanowires, thin films, multilayers …) & x-rays X-RAY M ETHODS AT GRAZING INCIDENCE STRUCTURE OF THIN LAYERS ON SUBSTRATE diffracted beam (GID) Crystalline properties reflected beam density profile depth resolution 10nm-200nm d e p t h Diffuse scattering (GISAXS) < 1 0 n m Morphology of nano islands α i / α c 1 6

  7. X-Ray Reflectivity: Principle n 1 <n 2 Visible Light n 1 Reflectivity: n 2 > 1 n 2 n 1 >n 2 X-Ray n 1 Reflectivity: n 2 n 2 < 1 adapted M. Tolan Univ. Dortmund

  8. Reflection and refraction – Perfect surface λ 2 − − δ = ρ ≈ 4 6 10 .. 10 r E r 0 π E 0 2 λ − − β = µ ≈ 6 9 10 .. 10 E t π 4 α = α cos cos Minus!! n Snell-Descartes law: Dispersion Absorption i t α ≤ α ≥ α cos( ) 1 , i.e. ∃ transmitted wave only if i t c - Incident wave totally externally reflected. α ≤ α , If - Transmitted wave exponentially damped with z. i c r α critical angle for total external α = δ = × λ × ρ ≈ ° 2 0 0 . 1 to 0.5 c π c reflection of X-rays

  9. Reflection and refraction: perfect surface Fresnel equations: • E r E 0 Relationships between the E t amplitudes of incident, transmitted and reflected beam. Intensity Amplitude 2 α − α α − α sin( ) E E = = = ≈ Reflection r r i t i t R r α + α α + α sin( ) E E 0 0 i t i t α α α 2 sin( ) cos( ) 2 2 E = = ≈ E Transmission t i t i t = t T α + α α + α sin( ) E E 0 i t i t 0

  10. Limiting and asymptotic values for Fresnel equations Transmission Reflection α α 2 2 δ 1 2 = ≈ i i t α − α + ( 1 ) δ 1 2 α + α − δ 2 2 α − α − δ 2 α + α + α 2 i i 2 ( 1 ) 2 i i = ≈ α i i i i 2 i 2 r δ 1 2 i α + α − δ 2 2 α + α + ( 1 ) α α 2 i i α 2 i i 2 ≈ ≈ α < δ ...... ...... 2 i i t for δ i Amplitude δ i α + 2 = α << δ 1 .......... ..... .......... 2 r for α i i i δ α 2 = − α >> δ ...... .......... 2 r for ≈ = α >> δ 1 .......... ......... ..... 2 i t for α 2 i 2 α i 2 i i 0 10 4 R F = r² T= t² -1 10 1/Q z 4 4 1/q 3 -2 10 Reflectivity 2 Q c T(q z ) q c Intensity 2 -3 10 π δ 4 2 64 1 Q z 2 = ( ) -4 R F q 10 λ 4 4 q 0,00 0,05 0,10 0,15 0,20 -5 10 Q z = 4π/λ sin Θ 1 q z =4 π / λ sin( α i ) 0,00 0,05 0,10 0,15 0,20 Q z = 4π/λ sin Θ 1 q z =4 π / λ sin( α i )

  11. Exact evaluation of Fresnel reflectivity � Absorption β also play a significant role

  12. Fresnel Reflectivity: R F ( α i ) with absorption Total External Reflection Regime -4 = ( 4π/λ sin α ι ) −4 Q z

  13. Transmission Function with absorption T F = |t| 2

  14. Penetration Depth with absorption − 1 = = λ π Im( ) / 2 L k l , , , i t z i f f [ ] 1 { } 1 / 2 1 / 2 = δ − α + α − δ + β 2 2 2 ( 2 sin ) (sin 2 ) 4 l , , i , i f i f f 2 photoabsorption Λ evanescent regime − ( ) 1 π r ρ 0

  15. The geometry of X-ray reflectivity Transferred momentum :

  16. X-ray reflectivity: main equation Helmholtz equation Formal solution: � Electron density profile adapted from M. Tolan Univ. Dortmund

  17. Reflectivity from multilayers Multiple scattering (dynamical calculation) Matrix formalism: Parrat iterations Parrat, 1954 adapted M. Tolan Univ. Dortmund

  18. Reflectivity from layer on substrate. Ex: PS on Si � Reflectivity used as an everyday laboratory tool to measure the thickness of layers deposited on a substrate adapted from M. Tolan Univ. Dortmund

  19. Rough interfaces: statistics adapted M. Tolan Univ. Dortmund

  20. Reflectivity by a rough surface : which roughness ?

  21. Roughness in multilayers?

  22. Effect of interfacial roughness on reflectivity: single interface 4 1/q 2 ) 1/q 4 exp(-q 2 σ � Reflectivity very efficient to measure (small) (statistically averaged) roughness of surfaces or interfaces.

  23. Roughness at several interfaces

  24. Thin film with surface and interface roughness. Example: PS layer on Si, with roughness � Effects of surface and interface roughness very different � σ 1 , σ 2 and d can be determined independantly

  25. Reflectivity calculation for arbitrary density profiles

  26. Example of fit of reflectivity curve: adapted M. Tolan Univ. Dortmund

  27. Simplier aproach: Kinematical approximation

  28. The « master » formula Example: roughness 2 π σ exp( − z 2 1 ( ) ρ ( z ) = ′ 2 ) ⇒ R ( q ) = R F ( q )exp − q 2 σ 2 2 σ

  29. Kinematical versus dynamical calculation

  30. ? ρ (z) R(qz) |T.F.|2 Mat rices Pb: Loss of the phase: 0 10 1.0 -1 10 Different ways to solve the phase problem: 0.8 0.6 -2 10 0.4 0.2 -3 -Inclusion of pre-knowledge 10 0.0 -20 0 20 40 60 -4 Å 10 -Anomalous reflectivity -5 10 -6 10 -7 10 0.0 0.2 0.4 0.6 0.8 1.0

  31. Ex: Multilayers: • Complex index profile A B } xN A B N x 0 A 10 B -1 10 sin θ Β =λ /2d -2 10 -3 10 ∆θ=λ/2/ Nd -4 10 � � � � � � { -5 10 -6 10 -7 10 -8 10 0.0 0.2 0.4 0.6 0.8 1.0 θ, q � X-ray reflectivity used to characterize the thickness, period and roughnesses of multilayers.

  32. Rough surfaces � diffuse scattering qx qz q qz � Lateral features of the roughness – Height-height correlations

  33. Ex.: Roughness correlations in multilayers?

  34. Conclusions on reflectivity Specular reflectivity measures • average density (mass and electron density) • layer thicknesses • interface roughness Off-specular reflectivity probes • Height-height correlations • lateral order at nanometer-micrometer scale • Refraction under grazing incidence � tuneable scattering depth

  35. Why GISAXS ? GISAXS Statistical information Lateral and vertical correlation shape as seen by x-rays: input for diffraction experiments Information about buried objects AFM / STM Local information Detailed shape

  36. Grazing Incidence Small Angle X-ray Scattering (GISAXS) Standard 3D growth ( Volmer-Weber ) Principle Example : 20 Å Ag/MgO(001) 500K q z q y [110] [110] h h ω (001) (001) D (111) (111) α f 1/h 1/h α i d d [100] [100] 2 θ (001) (001) (111) (111) (111) (111) q x h d d 1/h 1/h d 1/d 1/d 2D image around direct beam: Fourier transform of objects 1/D 1/D Morphology • Shape Anisotropic islands: • Sizes truncated square pyramids with (111) facets • Size distributions α i • Particle-particle pair correlation function

  37. Off-specular reflectivity: Probed length scales?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend