with new hadronic top tagging techniques
play

with new hadronic top-tagging techniques T T.A. du Pree, P. Harris, - PowerPoint PPT Presentation

Search for top+ E miss with new hadronic top-tagging techniques T T.A. du Pree, P. Harris, J. Marrouche, N. Wardle [CERN] M. Cremonesi, B. Jayatilaka, J. Lewis, C.M. Suarez, N. Tran [Fermilab] D. Abercrombie, B. Allen, Z. Demiragli, G. G


  1. Search for top+ E miss with new hadronic top-tagging techniques T T.A. du Pree, P. Harris, J. Marrouche, N. Wardle [CERN] M. Cremonesi, B. Jayatilaka, J. Lewis, C.M. Suarez, N. Tran [Fermilab] D. Abercrombie, B. Allen, Z. Demiragli, G. G´ omez-Ceballos, D. Hsu, Y. Iiyama, D. Kovalskyi, B. Maier, S. Narayanan , C. Paus [MIT] K. Hahn, S. Sevova, K. Sung, M. Trovato [Northwestern] J. Pazzini, M. Zanetti, A. Zucchetta [Padova] MET+X, 24/02/2017 S. Narayanan (MIT) Hadronic monotop 24/02/2017 1 / 28

  2. Analysis status ◮ Shown today: Summer16 MC and re-reco data ◮ AN and PAS will be updated in coming days with results presented today ◮ Early next week: first look at re-MINIAOD, updated JEC ◮ This talk: focus on updates since previous talk ◮ NLO signal model ◮ POG b -tag scale factors ◮ Additional data-driven backgrounds ◮ Categorization and optimization of selection S. Narayanan (MIT) Hadronic monotop 24/02/2017 2 / 28

  3. Monotop via flavor-mixing neutral current u i χ Vector field that couples to q ¯ q ′ and decays to χ ¯ χ : V L int = V µ ¯ χγ µ ( g V χ + g A χ γ 5 ) χ χ ¯ u q u γ µ ( g V u + g A u γ 5 ) q u V µ + ¯ q d γ µ ( g V d + g A d γ 5 ) q d V µ + ¯ g t Definitions: ◮ V µ is the spin1 mediator ◮ g V χ and g A χ are the vector and axial-vector couplings of the DM to the mediator ◮ g V u and g A u are 3 × 3 flavor matrices and are the vector and axial-vector couplings of the up-type quarks ( q u ) to V ◮ g V d and g A d are the equivalent for down-type quarks ( q d ) S. Narayanan (MIT) Hadronic monotop 24/02/2017 3 / 28

  4. Monotop via flavor-mixing neutral current ◮ This is an extension of DMSimp with flavor mixing implemented ◮ CMS and ATLAS have agreed to use this model for monotop ◮ SU (2) L mandates g V u − g A u = g V d − g A d ◮ Choice: g V u = g V d and g A u = g A d ◮ We choose to only turn on u - t mixing in g V,A u ⇒ monotop 13 TeV 13 TeV 13 TeV Arbitrary units Arbitrary units Arbitrary units CMS CMS CMS 0.3 Simulation Preliminary Simulation Preliminary Simulation Preliminary 0.3 0.4 V V V V V V g = 0.25, g = 1, m = 1 GeV g = 0.25, g = 1, m = 1 GeV g = 0.25, g = 1, m = 1 GeV χ χ χ q q q DM DM DM m = 0.3 TeV m = 0.3 TeV V m = 0.3 TeV V 0.3 V m = 0.5 TeV 0.2 m = 0.5 TeV m = 0.5 TeV V 0.2 V V m = 1.0 TeV m = 1.0 TeV V m = 1.0 TeV V V m = 1.5 TeV m = 1.5 TeV m = 1.5 TeV V 0.2 V V m = 2.25 TeV m = 2.25 TeV m = 2.25 TeV V V V 0.1 0.1 0.1 0 0 0 200 400 600 800 1000 0 5 10 200 400 600 800 1000 fat jet p (GeV) #AK4 jets PF MET (GeV) T S. Narayanan (MIT) Hadronic monotop 24/02/2017 4 / 28

  5. Overview of objects Jets Tau veto ◮ AK4 jets for background suppression ◮ Decay mode finding and POG very loose ◮ b -tagged if passes CSVL isolation ◮ “Isolated” if no overlap with CA15 jet Electrons, muons, photons ◮ PUPPI CA15 jets to identify ◮ Latest POG IDs used for veto (SR) and hadronically-decaying tops selection (CRs) ◮ b -tagged if one subjet passes CSVL ◮ Loose (tight) top-tagged if BDT score is greater than 0.1 (0.45) ◮ Require 110 < m SD < 210 GeV S. Narayanan (MIT) Hadronic monotop 24/02/2017 5 / 28

  6. Selection overview Preselection: ◮ Exactly one fatjet passing mass and BDT cuts ◮ Recoil greater than 250 GeV ◮ No identified τ leptons N iso Region(s) Main process(es) N e/µ N γ Fatjet b -tag b -tag → ( ℓ ) ν, t ¯ Signal Z → νν, W t → 0 0 0 > CSVL bqq ′ + b ( ℓ ) ν t → bqq ′ + bℓν t ¯ Single- ℓ (top) 1 0 1 > CSVL Single- ℓ ( W ) W → ℓν 1 0 0 < CSVL Dilepton Z → ℓℓ 2 0 − − Photon γ 0 1 − − NB: muon and electron regions are separate S. Narayanan (MIT) Hadronic monotop 24/02/2017 6 / 28

  7. Top-tagger ◮ Using a new BDT constructed out of substructure variables (particularly energy correlation functions) ◮ Documentation available here , currently under review by JMAR -1 -1 36.6 fb (13 TeV) 36.6 fb (13 TeV) 2200 Events Events 2500 CMS Preliminary Data Data CMS Preliminary Data Data 2000 Z+jets Z+jets t t t t t t t t W+jets W+jets 1800 2000 W+jets W+jets Z+jets Z+jets Single t Single t Single t Single t 1600 Diboson Diboson Diboson Diboson 1400 QCD QCD QCD QCD 1500 1200 1000 1000 800 600 500 400 200 0 0 Data-Exp Data-Exp 0.4 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 0.4 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 Exp Exp 0.2 0.2 0 0 − − 0.2 0.2 − 0.4 − 0.4 − − − − − − − − − − 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 Top BDT Top BDT Muon t ¯ Dimuon selection: good agreement t selection: good agreement in shape S. Narayanan (MIT) Hadronic monotop 24/02/2017 7 / 28

  8. Brief aside: t ¯ t modeling ◮ Our nominal simulation (Powheg) does not get the t ¯ t normalization correct ◮ Observed in other analyses that see high p T t ¯ t ◮ Ongoing studies to understand and fix the problem, see talk at TopModGen ◮ Attempting to request a large FXFX sample to use in the analysis Powheg Herwig amc@nlo FXFX -1 -1 36.6 fb (13 TeV) -1 36.6 fb (13 TeV) 36.6 fb (13 TeV) 4500 Events Events Events 5000 4000 Data Data Data Data CMS Preliminary Data Data CMS Preliminary CMS Preliminary 4000 t t t t t t t t t t t t 3500 W+jets W+jets W+jets W+jets W+jets W+jets Z+jets Z+jets Z+jets Z+jets 3500 Z+jets Z+jets 4000 Single t Single t Single t Single t 3000 Single t Single t Diboson Diboson Diboson Diboson 3000 Diboson Diboson QCD QCD QCD QCD QCD QCD 2500 3000 2500 2000 2000 2000 1500 1500 1000 1000 1000 500 500 0 0 Data-Exp 0 Data-Exp 0.4 60 80 100 120 140 160 180 200 220 240 Data-Exp 0.4 60 80 100 120 140 160 180 200 220 240 0.4 60 80 100 120 140 160 180 200 220 240 Exp Exp Exp 0.2 0.2 0.2 0 0 0 − − 0.2 − 0.2 0.2 − − 0.4 − 0.4 0.4 60 80 100 120 140 160 180 200 220 240 60 80 100 120 140 160 180 200 220 240 60 80 100 120 140 160 180 200 220 240 fatjet m [GeV] fatjet m [GeV] fatjet m [GeV] SD SD SD S. Narayanan (MIT) Hadronic monotop 24/02/2017 8 / 28

  9. Top-tagging in signal events -1 -1 36.6 fb (13 TeV) 36.6 fb (13 TeV) a.u. a.u. 0.18 CMS Preliminary CMS Preliminary m m =2.5 TeV =2.5 TeV m m =2.5 TeV =2.5 TeV V V 0.08 V V 0.16 m m =1.5 TeV =1.5 TeV m m =1.5 TeV =1.5 TeV V V V V m =1 GeV, g =0.25, g =1 m =1 GeV, g =0.25, g =1 χ χ V V V V χ χ q q 0.07 0.14 m m =1.0 TeV =1.0 TeV m m =1.0 TeV =1.0 TeV V V V V 0.06 m m =0.5 TeV =0.5 TeV m m =0.5 TeV =0.5 TeV 0.12 V V V V m m =0.3 TeV =0.3 TeV m m =0.3 TeV =0.3 TeV 0.05 0.1 V V V V 0.04 0.08 0.03 0.06 0.04 0.02 0.01 0.02 0 0 − − − − − 0 50 100 150 200 250 300 350 400 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 fatjet m [GeV] Top BDT SD Generally observe higher m V ⇒ higher p t T ⇒ more merged top jets S. Narayanan (MIT) Hadronic monotop 24/02/2017 9 / 28

  10. Signal region Tight Loose -1 -1 36.6 fb (13 TeV) 36.6 fb (13 TeV) Events/GeV Events/GeV CMS Preliminary m m =1.75 TeV, m =1.75 TeV, m =1 GeV =1 GeV 3 V V χ χ CMS Preliminary m m =1.75 TeV, m =1.75 TeV, m =1 GeV =1 GeV 10 V V χ χ 3 Z+jets Z+jets 10 Z+jets Z+jets t t t t t t t t 2 10 W+jets W+jets 2 10 W+jets W+jets ◮ Tight category has much Single t Single t Single t Single t 10 Diboson Diboson Diboson Diboson 10 higher t ¯ t contribution QCD QCD QCD QCD 1 1 than previous iterations of − 1 10 − 1 this analysis 10 − 2 10 − 2 10 − 3 10 − 3 10 300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000 PF MET [GeV] PF MET [GeV] S. Narayanan (MIT) Hadronic monotop 24/02/2017 10 / 28

  11. Single µ ( W ) control region Tight Loose -1 36.6 fb (13 TeV) -1 36.6 fb (13 TeV) Events/GeV Events/GeV CMS Preliminary Data Data Data Data CMS Preliminary 3 10 W+jets W+jets 3 10 W+jets W+jets t t t t t t t t Z+jets Z+jets Z+jets Z+jets 10 2 ◮ Prefit agreement is 2 Single t Single t 10 Single t Single t Diboson Diboson Diboson Diboson reasonable QCD QCD 10 QCD QCD 10 ◮ One slightly suspicious bin 1 1 at 500 GeV − 1 10 − 1 10 ◮ NB: large t ¯ t − 2 10 − 2 10 contamination in tight − 3 10 − 3 10 Data-Exp 0.4 300 400 500 600 700 800 900 1000 Data-Exp 0.4 300 400 500 600 700 800 900 1000 Exp category Exp 0.2 0.2 0 0 − 0.2 − 0.2 − 0.4 − 0.4 300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000 µ PF U( ) [GeV] µ PF U( ) [GeV] S. Narayanan (MIT) Hadronic monotop 24/02/2017 11 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend