a practical complexity theoretic analysis of mix systems
play

A Practical Complexity-Theoretic Analysis of Mix Systems Vinh Pham 1 - PowerPoint PPT Presentation

A Practical Complexity-Theoretic Analysis of Mix Systems Vinh Pham 1 , Joss Wright 2 , Dogan Kesdogan 1 Siegen University, Germany 1 , University of Oxford, United Kingdom 2 1/13 Motivation Anonymity definition [Pfitzmann & K ohntop


  1. A Practical Complexity-Theoretic Analysis of Mix Systems Vinh Pham 1 , Joss Wright 2 , Dogan Kesdogan 1 Siegen University, Germany 1 , University of Oxford, United Kingdom 2 1/13

  2. Motivation Anonymity definition [Pfitzmann & K¨ ohntop 2010]: Anonymity of a subject means that the subject is not sufficiently identifiable within a set of subjects, the anonymity set. Anon. Set Attributes Attributes s 3 a 5 s 3 a 5 Subject s 2 a 2 s 2 a 2 s 1 a 4 s 1 a 4 How strong is the concept of anonymity sets if: a subject is associated to a fixed set of attributes H A and a subject and its attributes a ∈ H A are repeatedly observed? 2/13

  3. Simple Mix and Attacker Model Recipient set R S ′ R ′ Sender set S r 1 s 6 r 5 s 3 s 1 r 9 Mix s 5 r 2 s 8 s 4 r 3 Global passive attacker (1) Information leakage per round is ( S ′ , R ′ ) : Sender set: S (can be equal R ) Recipient set: R = { r 1 , . . . , r N } , where | R | = N Sender anonymity set: S ′ ⊂ S , where | S ′ | = b is batch size Receiver set: R ′ ⊂ R , where | R ′ | ≤ b 3/13

  4. Attacker Model (2) Alice repeatedly contacts a fixed set of recipients: Alice’s peer set: H A = { a 1 , . . . , a m } , a i ∈ R and m = |H A | Alice’s peer: If r ∈ H A , also reffered by variable a Peer: Any receiver r ∈ R of a receiver set R ′ 4/13

  5. Attacker Model (2) Alice repeatedly contacts a fixed set of recipients: Alice’s peer set: H A = { a 1 , . . . , a m } , a i ∈ R and m = |H A | Alice’s peer: If r ∈ H A , also reffered by variable a Peer: Any receiver r ∈ R of a receiver set R ′ Sender anon. set Observation: O = { a, r 2 , . . . , r b } , a set R ′ Observation a Alice containing Alice’s contacted peer a . r 2 s 2 . . . . (One contact per round to simplify maths.) . . r b s b Observation Set: OS = {O 1 , . . . , O t } 4/13

  6. Attacker Model (2) Alice repeatedly contacts a fixed set of recipients: Alice’s peer set: H A = { a 1 , . . . , a m } , a i ∈ R and m = |H A | Alice’s peer: If r ∈ H A , also reffered by variable a Peer: Any receiver r ∈ R of a receiver set R ′ Sender anon. set Observation: O = { a, r 2 , . . . , r b } , a set R ′ Observation a Alice containing Alice’s contacted peer a . r 2 s 2 . . . . (One contact per round to simplify maths.) . . r b s b Observation Set: OS = {O 1 , . . . , O t } Intersection attack Goal: Unambiguous identification of Alice’s peer set H A Known: Condition (1) and (2) Unknown: Recipient set size N , batch size b , Number of Alice’s peers m , communication distribution of senders 4/13

  7. Minimal Hitting Set Attack (HS-Attack) Example: Alice repeatedly contacts two recipients, b = 2 , m = 2 R = { 1 , . . . , 6 } 3 4 3 6 H A = { 1 , 2 } 1 2 2 1 Observations: O 1 O 2 O 3 O 4 Smallest minimal hitting set O 1 { 3 } , { 1 } O 2 { 3 , 4 } , { 3 , 2 } , { 1 , 4 } , { 1 , 2 } O 3 { 3 , 4 } , { 3 , 2 } , { 1 , 2 } O 4 { 1 , 2 } Maximal number of sets: b m 5/13

  8. Minimal Hitting Set Attack (HS-Attack) Example: Alice repeatedly contacts two recipients, b = 2 , m = 2 R = { 1 , . . . , 6 } 3 4 3 6 H A = { 1 , 2 } 1 2 2 1 Observations: O 1 O 2 O 3 O 4 Smallest minimal hitting set O 1 { 3 } , { 1 } O 2 { 3 , 4 } , { 3 , 2 } , { 1 , 4 } , { 1 , 2 } O 3 { 3 , 4 } , { 3 , 2 } , { 1 , 2 } t h g O 4 { 1 , 2 } i t Maximal number of sets: b m 5/13

  9. Minimal Hitting Set Attack (HS-Attack) Example: Alice repeatedly contacts two recipients, b = 2 , m = 2 R = { 1 , . . . , 6 } 3 4 3 6 H A = { 1 , 2 } 1 2 2 1 Observations: O 1 O 2 O 3 O 4 By collecting observations: Smallest minimal hitting set O 1 { 3 } , { 1 } Prob. of sets H � = H A O 2 { 3 , 4 } , { 3 , 2 } , { 1 , 4 } , { 1 , 2 } decreases exponentially O 3 { 3 , 4 } , { 3 , 2 } , { 1 , 2 } O 4 { 1 , 2 } Maximal number of sets: b m 5/13

  10. Minimal Hitting Set Attack (HS-Attack) Example: Alice repeatedly contacts two recipients, b = 2 , m = 2 R = { 1 , . . . , 6 } 3 4 3 6 H A = { 1 , 2 } 1 2 2 1 Observations: O 1 O 2 O 3 O 4 By collecting observations: Smallest minimal hitting set O 1 { 3 } , { 1 } Prob. of sets H � = H A O 2 { 3 , 4 } , { 3 , 2 } , { 1 , 4 } , { 1 , 2 } decreases exponentially O 3 { 3 , 4 } , { 3 , 2 } , { 1 , 2 } ⇒ H A will become unique O 4 { 1 , 2 } smallest minimal hitting set Maximal number of sets: b m 5/13

  11. Minimal Hitting Set Attack (HS-Attack) Example: Alice repeatedly contacts two recipients, b = 2 , m = 2 R = { 1 , . . . , 6 } 3 4 3 6 H A = { 1 , 2 } 1 2 2 1 Observations: O 1 O 2 O 3 O 4 By collecting observations: Smallest minimal hitting set O 1 { 3 } , { 1 } Prob. of sets H � = H A O 2 { 3 , 4 } , { 3 , 2 } , { 1 , 4 } , { 1 , 2 } decreases exponentially O 3 { 3 , 4 } , { 3 , 2 } , { 1 , 2 } N ⇒ H A will become unique P - h a O 4 { 1 , 2 } r d smallest minimal hitting set Maximal number of sets: b m 5/13

  12. Difference to Statistical (Disclosure) Attacks Succeeds even if other recipients are more frequently observed than Alice’s peers Succeeds in the case of unpredictable distribution of recipients Example: Alice repeatedly contacts two recipients, b = 3 , m = 2 H A = { 1 , 2 } 1 2 1 2 1 1 3 4 3 5 3 5 Observations: 6 7 5 6 4 4 O 1 O 2 O 3 O 4 O 5 O 6 Peers 1 2 3 4 5 6 7 Freq. 4 2 3 3 3 2 1 6/13

  13. Difference to Statistical (Disclosure) Attacks Succeeds even if other recipients are more frequently observed than Alice’s peers Succeeds in the case of unpredictable distribution of recipients Example: Alice repeatedly contacts two recipients, b = 3 , m = 2 H A = { 1 , 2 } 1 2 1 2 1 1 3 4 3 5 3 5 Observations: 6 7 5 6 4 4 O 1 O 2 O 3 O 4 O 5 O 6 Peers 1 2 3 4 5 6 7 Freq. 4 2 3 3 3 2 1 Smallest minimal hitting set O 1 { 1 } , { 3 } , { 6 } O 2 { 1 , 2 } , { 1 , 4 } , { 1 , 7 } , { 2 , 3 } , { 3 , 4 } , { 3 , 7 } , { 2 , 6 } , { 4 , 6 } , { 6 , 7 } O 3 { 1 , 2 } , { 1 , 4 } , { 1 , 7 } , { 2 , 3 } , { 3 , 4 } , { 3 , 7 } O 4 { 1 , 2 } , { 2 , 3 } O 5 { 1 , 2 } , { 2 , 3 } O 6 { 1 , 2 } 6/13

  14. Contribution Current assumption about HS-attack: Intractable for large values N, b, m , due to solving NP-hard problems (smallest minimal hitting set) Surprises when applying HS-attack: Many non-trivial cases, solvable in polynomial mean time Mean complexity determined by some relation between N, b, m Contribution Mathematical bound of mean time complexity w.r.t. N, b, m Bound applies to non-uniform user communication Identifies Mix settings that are polynomial time breakable 7/13

  15. Estimating Number of Observations Hit by a Set C � �� � Hypothesis: H = { r 1 , . . . , r x , r x 1 +1 , . . . , r m − i } � �� � � �� � x chosen peers ( m − x ) non-chosen peers chosen: C ⊆ H , where all observations hitting C are known non-chosen: Only frequency of each single peer is known � Potential: Po ( H , C ) = |OS [ C ] | + |OS [ r ] \ OS [ C ] | � �� � � �� � r ∈H\C # obs. hitting C # obs. containing r Example: Potential of H = { r 1 , r 2 , r 3 } w.r.t. chosen peers OS = {O 1 , . . . , O 8 } 2 1 1 OS [ r 1 ] = {O 1 , O 2 , O 3 } OS [ r 1 ] OS [ r 2 ] OS [ r 2 ] = {O 2 , O 3 , O 4 , O 5 } 3 OS [ r 3 ] = {O 3 , O 4 , O 6 } 2 2 C = {} : Po ( { r 1 , r 2 , r 3 } ) = (3 + 4 + 3) OS [ r 3 ] 1 8/13

  16. Estimating Number of Observations Hit by a Set C � �� � Hypothesis: H = { r 1 , . . . , r x , r x 1 +1 , . . . , r m − i } � �� � � �� � x chosen peers ( m − x ) non-chosen peers chosen: C ⊆ H , where all observations hitting C are known non-chosen: Only frequency of each single peer is known � Potential: Po ( H , C ) = |OS [ C ] | + |OS [ r ] \ OS [ C ] | � �� � � �� � r ∈H\C # obs. hitting C # obs. containing r Example: Potential of H = { r 1 , r 2 , r 3 } w.r.t. chosen peers OS = {O 1 , . . . , O 8 } 1 1 OS [ r 1 ] = {O 1 , O 2 , O 3 } OS [ r 2 ] \ OS [ r 1 ] OS [ r 2 ] = {O 2 , O 3 , O 4 , O 5 } OS [ r 1 ] OS [ r 3 ] = {O 3 , O 4 , O 6 } 2 C = {} : Po ( { r 1 , r 2 , r 3 } ) = (3 + 4 + 3) OS [ r 3 ] \ OS [ r 1 ] C = { r 1 } : Po ( { r 1 , r 2 , r 3 } ) = 3 + (2 + 2) 1 8/13

  17. ExactHS Algorithm Computes/disproves all hypotheses H recursively within O ( b m ) Starts with C = {} Adds one suspected peer to C in each recursion level until: H ′ Po ( H ′ , C ) < |OS| , then all H ⊇ C disproved, or max C hits all observations in OS and is thus a hitting set Example: b = 2 , m = 3 , H A = { 1 , 2 , 3 } Observations: Search tree: 4 6 5 4 7 8 (2 + 2 + 2) 1 1 2 3 3 2 O 1 O 2 O 3 O 4 O 5 O 6 max H Po ( H , {} ) Peer choices: 9/13

  18. ExactHS Algorithm Computes/disproves all hypotheses H recursively within O ( b m ) Starts with C = {} Adds one suspected peer to C in each recursion level until: H ′ Po ( H ′ , C ) < |OS| , then all H ⊇ C disproved, or max C hits all observations in OS and is thus a hitting set Example: b = 2 , m = 3 , H A = { 1 , 2 , 3 } Observations: Search tree: 4 6 5 4 7 8 (2 + 2 + 2) 1 1 2 3 3 2 4 , 1 O 1 O 2 O 3 O 4 O 5 O 6 Peer choices: 1 C = { 4 } 9/13

  19. ExactHS Algorithm Computes/disproves all hypotheses H recursively within O ( b m ) Starts with C = {} Adds one suspected peer to C in each recursion level until: H ′ Po ( H ′ , C ) < |OS| , then all H ⊇ C disproved, or max C hits all observations in OS and is thus a hitting set Example: b = 2 , m = 3 , H A = { 1 , 2 , 3 } Observations: Search tree: 4 6 5 4 7 8 (2 + 2 + 2) 1 1 2 3 3 2 4 , 1 O 1 O 2 O 3 O 4 O 5 O 6 2 + (2 + 1) Peer choices: 1 C = { 4 } − max H Po ( H , { 4 } ) 9/13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend