with independent entangled photon pair sources
play

with independent entangled photon-pair sources and Experimental - PowerPoint PPT Presentation

Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources and Experimental demonstration of nonbilocality Yang-Fan Jiang University of Science and Technology of China QCrypt 2018 Outline A brief review


  1. Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources and Experimental demonstration of nonbilocality Yang-Fan Jiang University of Science and Technology of China QCrypt 2018

  2. Outline ① A brief review on Entanglement swapping ② Entanglement swapping over 100 km optical fiber ③ Experimental demonstration of nonbilocality ④ Summary and outlook 3/16

  3. A brief review on Entanglement swapping EPR-sources State of this system Four Bell states 1 ( 1 ( 1 (    H V V H )        H V V H ) H V V H ) 1234 2 1 2 1 2 12 1 2 1 2 2 3 2 3 2 2 23   ( H V V H ) 1 ( 1 (        H V V H ) H H V V ) 3 4 3 4 34 3 4 3 4 2 3 2 3 2 2 23 1 (           2 14 23 14 23           ) 14 23 14 23 . 4/16 Zukowski M et al., Phys. Rev. Lett. 1993, 71(26): 4287 – 4290; J.-W. Pan et al., Phys. Rev. Lett. 1998, 80(18): 3891 – 3894.

  4. A brief review on Entanglement swapping Applications ① Physics foundations nonlocality , wave –particle duality, … ( A. Peres, 2000; C. Branciard et al., 2010 … ) ② Quantum networks Quantum repeater, Quantum relay, Quantum key distribution, … (H. J. Briegel et al., 1998; L. M. Duan et al., 2001; Q.- C. Sun et al., 2017 …) T. Yang et al., Phys.Rev.Lett., 2006 Requirements M. Halder et al., 2007 ① Independent quantum sources R. Kaltenbaek et al., 2009 B. Hensen et al., Nature, 2015 (1.3 km) ② Field test R. Valivarthi et al., Nat. Photon., 2016 (17 km) Q.-C. Sun et al., Nat. Photon., 2016 (25 km) … 5/16

  5. Outline ① A brief review on Entanglement swapping ② Entanglement swapping over 100 km optical fiber ③ Experimental demonstration of nonbilocality ④ Summary and outlook 3/16

  6. Schematic diagram 12.5 km Alice Innovation Ind. Park Prepares& distributes EPR pairs, Performs state analysis Charlie Software Park BSM Bob USTC Prepares& distributes EPR pairs, Performs state analysis Transmission loss : 29 dB Technical challenges: • 103 km of optical fiber Interference between independent photons (Indistinguishability of photons) Inside the lab : 77 km; • Transmission loss outside the lab : 25 km kept underground; 1 km suspended in air. • Stability of system and channel Map data: Google. CNES/Astrium. DigitalGlobe. 7/16

  7. Sequential time-bin photon pairs source  Repetition rate 1 GHz  Pulse duration 75 ps  Extinction ratio > 26dB  1 n 1    ik = e t t k k s i n  k 0 Spontaneous four-wave-mixing in dispersion shifted fibre: Frequency correlation:    d       ( ) 2 2 p    ( ) 4 GHz s i   7 GHz p V  99% . Zhou et al. Phys. Lett. A 375 2274 (2011); Zukowski et al. Ann. N. Y. Acad. Sci, 755 91-102 (1995); 8/16 Q. Zhang et al. Opt. Express 16, 3293 – 329 8 (2008).

  8. Sequential time-bin photon pairs source  1 n 1  The visibility of the fitted curve:   MZI ik = e t t k k s i n  k 0 (a) Alice: (89.8 ± 0.5)% 1         i n [( 1)2 ] (b) Bob: (82.9 ± 1.2)% = { t t e t t s i 0 0 n n s i s i 2 n  n 1           ik 2 i k [( 1)2 ] ([ e e ] t t ) s i  Multi pair events and the noise (~93%) k k s i  k 1  Temperature fluctuation (~96%)   n 1 n 1           i k ( 2 ) i k ( 2 ) e t t e t t } s i   k 1 k k k 1 s i s i  Limited bandwidth of the photodiode.   k 0 k 0        R 1 V cos( ) c s i 9/16 Q. Zhang et al. Opt. Express 16, 3293 – 3298 (2008).

  9. Synchronization of independent sources RMS time jitter Which are much smaller than the coherent time of the signal photons ( ∼ 110 ps). 10/16

  10. System stabilization Measure the difference between the arrival time of the signal photons Automatic stabilizations: • from Alice and Bob as error signals and feed them into delay lines. Time delay • Polarization • Measured by a TDC with time resolution of 4 ps • MZI, FBG, EOM, Pump power • Feedback interval time: 100 s ... 11/16

  11. System stabilization The standard deviations of the relative delay: (a) : Rainy 6.7 ps , (b) : Cloudy 6.0 ps , (c) : Sunny 6.5 ps . Which are much smaller than the coherent time of the signal photons ( ∼ 110 ps). Our system can work well in different weather conditions. 12/16

  12. Experimental results BSM: 1    = ( t t t t )   k k 1 k 1 k k 2 Created entanglement state: 1    = ( t t t t )   k k 1 k 1 k k 2 • Each data point is accumulated for more than 30 h • The average visibility is (73.2 ± 5.6)% Classical limit 1/3 13/16

  13. Outline ① A brief review on Entanglement swapping ② Entanglement swapping over 100 km optical fiber ③ Experimental demonstration of nonbilocality ④ Summary and outlook 3/16

  14. Experimental demonstration of nonbilocality Models where independent systems are characterized by different, uncorrelated hidden states λ .  V 50% biloc 1   V 70.7% CHSH 2 C. Branciard, N. Gisin,and S. Pironio, PRL 104, 170401 (2010)

  15. Experimental demonstration of nonbilocality • True Independent source p: the noise parameter • Strict locality constraint Result: • Measurement independence B    1.181 0.004 1   S =2.652 0.059 2 CHSH arXiv: 1807.05375 This work is subject to press embargo!

  16. Outline ① A brief review on Entanglement swapping ② Entanglement swapping over 100 km optical fiber ③ Experimental demonstration of nonbilocality ④ Summary and outlook 3/16

  17. Summary and outlook The first experiment Our experiment has shown that realizing entanglement swapping between two  cities is technically feasible: The Second experiment  Our experimental realization constitutes a fundamental block for a large quantum network. • True Independent source • Strict locality constraint • Measurement independence Outlook : • Test the fundamental issues of quantum information science • Stimulate novel information processing applications • Quantum networks with multi-sources, free-space channel, etc. 15/16

  18. Acknowledgement USTC Qi-Chao Sun, Ya-Li Mao, Bing Bai, Xiao Jiang, Teng-Yun Chen, Jing-Yun Fan,Qiang Zhang, Jian-Wei Pan SIMIT Li-Xing You, Wei-Jun Zhang, Hao Li, Zhen Wang SJTU Xian-Feng Chen THU Wei Zhang, Yi-Dong Huang 2/16

  19. Thank you for your attention!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend