wiener filter example haykin 4e ch 2 problems 11 12 and
play

Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond - PowerPoint PPT Presentation

Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond Eric Dubois School of Electrical Engineering and Computer Science University of Ottawa October 2012 Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and


  1. Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond Eric Dubois School of Electrical Engineering and Computer Science University of Ottawa October 2012 Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 1 / 12

  2. Problem Setup The desired signal is passed through a noisy communication channel: The desired signal is distorted by a filter with transfer function √ 1 H 2 ( z ) = | z | > | c 2 | , c 2 = . 05 + . 8025 ≈ . 9458 1 − c 2 z − 1 v 2 ( n ) is zero-mean white noise uncorrelated with d . S v 2 ( z ) = σ 2 2 = 0 . 1 Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 2 / 12

  3. The Desired Signal The desired signal is assumed to be the realization of an AR(1) process The synthesis filter is given by √ 1 H 1 ( z ) = | z | > | c 1 | , c 1 = . 05 − . 8025 ≈ − . 8458 1 − c 1 z − 1 The white noise input is given by S v 1 ( z ) = σ 2 1 = 0 . 27 Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 3 / 12

  4. Autocorrelation Function of the Desired Signal Recall that r d ( n ) = r v 1 ( n ) ∗ h 1 ( n ) ∗ h 1 ( − n ). Taking z-transforms S d ( z ) = S v 1 ( z ) H 1 ( z ) H ∗ 1 (1 / z ∗ ) = S v 1 ( z ) H 1 ( z ) H 1 ( z − 1 ) (since h 1 is real) σ 2 1 1 = | c 1 | < | z | < (1 − c 1 z − 1 )(1 − c 1 z ) | c 1 | � �� � . 8458 < | z | < 1 . 1823 r d ( n ) is the inverse z-transform of S d ( z ). For n ≥ 0 r d ( n ) = res[ S d ( z ) z n − 1 , z = c 1 ] � � σ 2 1 z n = res ( z − c 1 )(1 − c 1 z ) , z = c 1 = σ 2 1 c n 1 1 − c 2 1 Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 4 / 12

  5. Autocorrelation Function of the Desired Signal (2) Since the process is real, r d ( − n ) = r d ( n ), and inserting the value of c 1 r d ( n ) = 0 . 9488( − 0 . 8458) | n | σ 2 d = 0 . 9488 Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 5 / 12

  6. Autocorrelation Function of the Observed Signal Since v 2 ( n ) and d ( n ) (and so x ( n )) are uncorrelated r u ( n ) = r x ( n ) + r v 2 ( n ) S u ( z ) = S x ( z ) + S v 2 ( z ) = S d ( z ) H 2 ( z ) H 2 ( z − 1 ) + 0 . 1 σ 2 1 = (1 − c 1 z − 1 )(1 − c 1 z )(1 − c 2 z − 1 )(1 − c 2 z ) + 0 . 1 The region of convergence is 1 | c 2 | < | z | < | c 2 | 0 . 9458 < | z | < 1 . 0573 r u ( n ) is the inverse z-transform of S u ( z ), using your preferred method (partial fraction, residue theorem, etc.). Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 6 / 12

  7. Autocorrelation Function of the Observed Signal (2) For n ≥ 0 r u ( n ) = res[ S x ( z ) z n − 1 , z = c 1 ] + res[ S x ( z ) z n − 1 , z = c 2 ] + 0 . 1 δ ( n ) � � σ 2 1 z n +1 = res ( z − c 1 )(1 − c 1 z )( z − c 2 )(1 − c 2 z ) , z = c 1 + � � σ 2 1 z n +1 res ( z − c 1 )(1 − c 1 z )( z − c 2 )(1 − c 2 z ) , z = c 2 + 0 . 1 δ ( n ) 1 c n +1 1 c n +1 σ 2 σ 2 1 2 = 1 )( c 1 − c 2 )(1 − c 1 c 2 ) + (1 − c 2 ( c 2 − c 1 )(1 − c 1 c 2 )(1 − c 2 2 ) + 0 . 1 δ ( n ) Thus, using symmetry of r u ( n ), and the values of the parameters, r u ( n ) = 0 . 2488( − 0 . 8458) | n | + 0 . 7512(0 . 9458) | n | + 0 . 1 δ ( n ) Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 7 / 12

  8. Cross-correlation Between Observed and Desired Signals Since v 2 ( n ) and d ( n ) are uncorrelated r du ( n ) = r dx ( n ) ∞ � = E[ D ( m ) h 2 ( ℓ ) D ( m − n − ℓ )] ℓ =0 ∞ � = h 2 ( ℓ ) r d ( n + ℓ ) ℓ =0 It follows that S du ( z ) = S d ( z ) H 2 ( z − 1 ) σ 2 1 1 = (1 − c 1 z − 1 )(1 − c 1 z )(1 − c 2 z ) , | c 1 | < | z | < | c 2 | Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 8 / 12

  9. Cross-correlation Between Observed and Desired Signals Using our preferred inverse z-transform method, for n ≥ 0, r du ( n ) = res[ S du ( z ) z n − 1 , z = c 1 ] � � σ 2 1 z n = res ( z − c 1 )(1 − c 1 z )(1 − c 2 z ) , z = c 1 σ 2 1 c n 1 = (1 − c 2 1 )(1 − c 1 c 2 ) = 0 . 5271( − 0 . 8458) n With these results, we can build the matrices R M and p M to solve for the FIR Wiener filter of any order M . Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 9 / 12

  10. Correlation matrix R 5 and correlation vector p 5   1 . 1000 0 . 5000 0 . 8500 0 . 4850 0 . 7285 0 . 5000 1 . 1000 0 . 5000 0 . 8500 0 . 4850     R 5 = 0 . 8500 0 . 5000 1 . 1000 0 . 5000 0 . 8500     0 . 4850 0 . 8500 0 . 5000 1 . 1000 0 . 5000   0 . 7285 0 . 4850 0 . 8500 0 . 5000 1 . 1000 � � p T 5 = 0 . 5271 − 0 . 4458 0 . 3771 − 0 . 3190 0 . 2698 Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 10 / 12

  11. Wiener Filters for M from 1 to 7 w0 = 0.4792 Jmin = 0.6962 w0 = 0.8362 -0.7854 Jmin = 0.1579 w0 = 0.7378 -0.8033 0.1378 Jmin = 0.1498 w0 = 0.7438 -0.6992 0.1527 -0.1470 Jmin = 0.1405 w0 = 0.7404 -0.6999 0.1370 -0.1495 0.0256 Jmin = 0.1402 w0 = 0.7407 -0.6962 0.1376 -0.1324 0.0282 -0.0279 Jmin = 0.1399 w0 = 0.7405 -0.6962 0.1370 -0.1325 0.0253 -0.0283 0.0047 Jmin = 0.1399 Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 11 / 12

  12. Eigenvalue-eigenvector decomposition of the correlation matrix R 5   0 . 4597 0 . 3277 − 0 . 7019 − 0 . 0854 − 0 . 4257 0 . 4175 − 0 . 5706 − 0 . 0854 0 . 7019 0 . 0116     Q = 0 . 4782 0 . 3662 0 . 0000 − 0 . 0000 0 . 7983     0 . 4175 − 0 . 5706 0 . 0854 − 0 . 7019 0 . 0116   0 . 4597 0 . 3277 0 . 7019 0 . 0854 − 0 . 4257   3 . 6073 0 0 0 0 0 1 . 0633 0 0 0     Λ = 0 0 0 . 3733 0 0     0 0 0 0 . 2482 0   0 0 0 0 0 . 2079 Q T Q = I Q T RQ = Λ Eric Dubois (EECS) Wiener Filter Example Haykin 4e Ch. 2 Problems 11, 12 and beyond October 2012 12 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend