when tensor decomposition meets compressed sensing
play

When tensor decomposition meets compressed sensing Pierre Comon - PowerPoint PPT Presentation

Intro General Exact CP Approx CP NonNeg Coherence AAP END When tensor decomposition meets compressed sensing Pierre Comon I3S, CNRS, University of Nice - Sophia Antipolis, France Collaborator: Lek-Heng Lim Sept. 27-30, 2010 Pierre


  1. Intro General Exact CP Approx CP NonNeg Coherence AAP END When tensor decomposition meets compressed sensing Pierre Comon I3S, CNRS, University of Nice - Sophia Antipolis, France Collaborator: Lek-Heng Lim Sept. 27-30, 2010 Pierre Comon LVA/ICA – Sept. 2010 1 / 43

  2. Intro General Exact CP Approx CP NonNeg Coherence AAP END Sparse representation & BSS Blind Source Separation & Sparse Representation x = H s H is K × P , underdetermined : K < P Sparse representation : Columns h n ∈ D , known dictionary BSS : H unknown • s sparse • s not sparse Pierre Comon LVA/ICA – Sept. 2010 2 / 43

  3. Intro General Exact CP Approx CP NonNeg Coherence AAP END Sparse representation & BSS Blind Source Separation & Sparse Representation x = H s H is K × P , underdetermined : K < P Sparse representation : Columns h n ∈ D , known dictionary BSS : H unknown • s sparse • s not sparse Pierre Comon LVA/ICA – Sept. 2010 2 / 43

  4. Intro General Exact CP Approx CP NonNeg Coherence AAP END Sparse representation & BSS Blind Source Separation & Sparse Representation x = H s H is K × P , underdetermined : K < P Sparse representation : Columns h n ∈ D , known dictionary BSS : H unknown • s sparse • s not sparse Pierre Comon LVA/ICA – Sept. 2010 2 / 43

  5. Intro General Exact CP Approx CP NonNeg Coherence AAP END Sparse representation & BSS Blind Source Separation & Sparse Representation x = H s H is K × P , underdetermined : K < P Sparse representation : Columns h n ∈ D , known dictionary BSS : H unknown • s sparse • s not sparse Pierre Comon LVA/ICA – Sept. 2010 2 / 43

  6. Intro General Exact CP Approx CP NonNeg Coherence AAP END Sparse representation & BSS Blind Source Separation & Sparse Representation x = H s H is K × P , underdetermined : K < P Sparse representation : Columns h n ∈ D , known dictionary BSS : H unknown • s sparse • s not sparse Pierre Comon LVA/ICA – Sept. 2010 2 / 43

  7. Intro General Exact CP Approx CP NonNeg Coherence AAP END Statistical approach Blind identification of linear mixtures Linear mixtures: x = H s If s ℓ statistically independent , we have the core equation : P � ϕ ℓ ( u T H ) Ψ( u ) = ℓ =1 Take 3rd derivatives at point u : P � T ijk ( u ) = H i ℓ H j ℓ H k ℓ C ℓℓℓ ( u ) (1) ℓ =1 At u = 0 ➽ symmetric decomposition of T ijk [HOS] At u � = 0 ➽ [Taleb, Comon-Rajih, Yeredor] Pierre Comon LVA/ICA – Sept. 2010 3 / 43

  8. Intro General Exact CP Approx CP NonNeg Coherence AAP END Statistical approach Blind identification of linear mixtures Linear mixtures: x = H s If s ℓ statistically independent , we have the core equation : P � ϕ ℓ ( u T H ) Ψ( u ) = ℓ =1 Take 3rd derivatives at point u : P � T ijk ( u ) = H i ℓ H j ℓ H k ℓ C ℓℓℓ ( u ) (1) ℓ =1 At u = 0 ➽ symmetric decomposition of T ijk [HOS] At u � = 0 ➽ [Taleb, Comon-Rajih, Yeredor] Pierre Comon LVA/ICA – Sept. 2010 3 / 43

  9. Intro General Exact CP Approx CP NonNeg Coherence AAP END Statistical approach Blind identification of linear mixtures Linear mixtures: x = H s If s ℓ statistically independent , we have the core equation : P � ϕ ℓ ( u T H ) Ψ( u ) = ℓ =1 Take 3rd derivatives at point u : P � T ijk ( u ) = H i ℓ H j ℓ H k ℓ C ℓℓℓ ( u ) (1) ℓ =1 At u = 0 ➽ symmetric decomposition of T ijk [HOS] At u � = 0 ➽ [Taleb, Comon-Rajih, Yeredor] Pierre Comon LVA/ICA – Sept. 2010 3 / 43

  10. Intro General Exact CP Approx CP NonNeg Coherence AAP END Statistical approach Blind identification of linear mixtures Linear mixtures: x = H s If s ℓ statistically independent , we have the core equation : P � ϕ ℓ ( u T H ) Ψ( u ) = ℓ =1 Take 3rd derivatives at point u : P � T ijk ( u ) = H i ℓ H j ℓ H k ℓ C ℓℓℓ ( u ) (1) ℓ =1 At u = 0 ➽ symmetric decomposition of T ijk [HOS] At u � = 0 ➽ [Taleb, Comon-Rajih, Yeredor] Pierre Comon LVA/ICA – Sept. 2010 3 / 43

  11. Intro General Exact CP Approx CP NonNeg Coherence AAP END Statistical approach Blind identification of linear mixtures Linear mixtures: x = H s If s ℓ statistically independent , we have the core equation : P � ϕ ℓ ( u T H ) Ψ( u ) = ℓ =1 Take 3rd derivatives at point u : P � T ijk ( u ) = H i ℓ H j ℓ H k ℓ C ℓℓℓ ( u ) (1) ℓ =1 At u = 0 ➽ symmetric decomposition of T ijk [HOS] At u � = 0 ➽ [Taleb, Comon-Rajih, Yeredor] Pierre Comon LVA/ICA – Sept. 2010 3 / 43

  12. Intro General Exact CP Approx CP NonNeg Coherence AAP END Tensors: General items Pierre Comon LVA/ICA – Sept. 2010 4 / 43

  13. Intro General Exact CP Approx CP NonNeg Coherence AAP END Notation Arrays and Multi-linearity A tensor of order d is a multi-linear map: S ∗ ⊗ S ∗ ⊗ . . . ⊗ m → S m +1 ⊗ ⊗ . . . ⊗ ⊗ S d 1 ⊗ ⊗ ⊗ ⊗ ⊗ Once bases of spaces S ℓ are fixed, they can be represented by d-way arrays of coordinates ➽ bilinear form, or linear operator: represented by a matrix ➽ trilinear form, or bilinear operator: by a 3rd order tensor . Pierre Comon LVA/ICA – Sept. 2010 5 / 43

  14. Intro General Exact CP Approx CP NonNeg Coherence AAP END Notation Arrays and Multi-linearity A tensor of order d is a multi-linear map: S ∗ ⊗ S ∗ ⊗ . . . ⊗ m → S m +1 ⊗ ⊗ . . . ⊗ ⊗ S d 1 ⊗ ⊗ ⊗ ⊗ ⊗ Once bases of spaces S ℓ are fixed, they can be represented by d-way arrays of coordinates ➽ bilinear form, or linear operator: represented by a matrix ➽ trilinear form, or bilinear operator: by a 3rd order tensor . Pierre Comon LVA/ICA – Sept. 2010 5 / 43

  15. Intro General Exact CP Approx CP NonNeg Coherence AAP END Notation Multi-linearity Compact notation Linear change in contravariant spaces: T ′ � = A in B jp C kq T npq ijk npq Denoted compactly T ′ = ( A , B , C ) · T (2) Example : covariance matrix z = Ax ⇒ R z = ( A , A ) · R x = A R x A T Pierre Comon LVA/ICA – Sept. 2010 6 / 43

  16. Intro General Exact CP Approx CP NonNeg Coherence AAP END Definitions Decomposable tensor A d th order “ decomposable ” tensor is the tensor product of d vectors: T = u ⊗ ⊗ v ⊗ ⊗ w ⊗ . . . ⊗ ⊗ ⊗ ⊗ and has coordinates T ij ... k = u i v j . . . w k . may be seen as a discretization of multivariate functions whose variables separate : t ( x , y , . . . , z ) = u ( x ) v ( y ) . . . w ( z ) Nothing else but rank-1 tensors, with forthcoming definition Pierre Comon LVA/ICA – Sept. 2010 7 / 43

  17. Intro General Exact CP Approx CP NonNeg Coherence AAP END Definitions Decomposable tensor A d th order “ decomposable ” tensor is the tensor product of d vectors: T = u ⊗ ⊗ v ⊗ ⊗ w ⊗ . . . ⊗ ⊗ ⊗ ⊗ and has coordinates T ij ... k = u i v j . . . w k . may be seen as a discretization of multivariate functions whose variables separate : t ( x , y , . . . , z ) = u ( x ) v ( y ) . . . w ( z ) Nothing else but rank-1 tensors, with forthcoming definition Pierre Comon LVA/ICA – Sept. 2010 7 / 43

  18. Intro General Exact CP Approx CP NonNeg Coherence AAP END Definitions Decomposable tensor A d th order “ decomposable ” tensor is the tensor product of d vectors: T = u ⊗ ⊗ v ⊗ ⊗ w ⊗ . . . ⊗ ⊗ ⊗ ⊗ and has coordinates T ij ... k = u i v j . . . w k . may be seen as a discretization of multivariate functions whose variables separate : t ( x , y , . . . , z ) = u ( x ) v ( y ) . . . w ( z ) Nothing else but rank-1 tensors, with forthcoming definition Pierre Comon LVA/ICA – Sept. 2010 7 / 43

  19. Intro General Exact CP Approx CP NonNeg Coherence AAP END Definitions Example � � 1 Take v = − 1 � � 1 − 1 − 1 1 ⊗ 3 def Then v ⊗ ⊗ = v ⊗ ⊗ v ⊗ ⊗ v = ⊗ ⊗ − 1 1 1 − 1 This is a “decomposable” symmetric tensor → rank-1 ✇ ✇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✇ . . . ✇ . . . . . . . . . . . . . . . . . . . ✇ ✇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✇ . . . ✇ . . . . . . . . . . . . . . . . . . . blue bullets = 1, red bullets = − 1. Pierre Comon LVA/ICA – Sept. 2010 8 / 43

  20. Intro General Exact CP Approx CP NonNeg Coherence AAP END Definitions Example � � 1 Take v = − 1 � � 1 − 1 − 1 1 ⊗ 3 def Then v ⊗ ⊗ = v ⊗ ⊗ v ⊗ ⊗ v = ⊗ ⊗ − 1 1 1 − 1 This is a “decomposable” symmetric tensor → rank-1 ✇ ✇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✇ . . . ✇ . . . . . . . . . . . . . . . . . . . ✇ ✇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✇ . . . ✇ . . . . . . . . . . . . . . . . . . . blue bullets = 1, red bullets = − 1. Pierre Comon LVA/ICA – Sept. 2010 8 / 43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend