wave collapse doesn t matter
play

Wave Collapse Doesnt Matter Chris Stucchio, Courant Institute Joint - PowerPoint PPT Presentation

Wave Collapse Doesnt Matter Chris Stucchio, Courant Institute Joint work with Avy Soffer, Juerg Frohlich and Michael Sigal. Quantum Mechanics - consensus Wavefunction State of the universe ( x 1 , . . . , x N , t ) = position of i th


  1. Wave Collapse Doesn’t Matter Chris Stucchio, Courant Institute Joint work with Avy Soffer, Juerg Frohlich and Michael Sigal.

  2. Quantum Mechanics - consensus

  3. Wavefunction State of the universe ψ ( x 1 , . . . , x N , t ) = position of i ’th particle x i = time t

  4. Probability Theory Probability distribution of particle configurations | ψ ( x 1 , . . . , x N , t ) | 2 dx 1 . . . dx N

  5. Evolution i ∂ t ψ = H ψ Schrodinger Equation

  6. Physical Facts • Suppose we allow the wavefunction evolves to a “split” state √ √ ψ ( x, T ) = λφ ( x − L ) + 1 − λφ ( x + L ) • Meaning of this wavefunction: particle near x = L with probability λ particle near x = − L with probability 1 − λ Repeated “measurements” of particle position will yield same result

  7. Physical Facts • In the absence of measurement, interference effects are observed. • Split, recombine than measure: P ( x ) = | φ 1 ( x ) | 2 + | φ 2 ( x ) | 2 + 2 ℜ φ 1 ( x ) φ 2 ( x ) interference • Split, measure, recombine, then measure again: term P ( x ) = | φ 1 ( x ) | 2 + | φ 2 ( x ) | 2

  8. Copenhagen Interpretation and Wave Collapse “Textbook Quantum Mechanics”

  9. How to predict outcome of experiments • “Prepare” initial wavefunction. √ √ ψ ( x, 0) = λφ ( x − L ) + 1 − λφ ( x + L ) • Allow it to evolve under Schrodinger equation. • “Measure” the position of the particle.

  10. How to predict outcome of experiments √ √ λφ ( x − L ) + 1 − λφ ( x + L ) probability = λ probability = 1 − λ measurement φ ( x − L ) φ ( x + L )

  11. Problems with this interpretation • Why do certain states of the universe constitute a measurement? • Why are measurements special? • Are there experiments which are not measurements?

  12. Are all wavefunctions possible? (Not normalized)

  13. Decoherence

  14. Dynamics in configuration space Configuration space is really big. Many particles moving a small distance adds up. √ | (1 , 1 , . . . , 1) − (0 , 0 , . . . , 0) | = 3 N

  15. Measurements are not special • Between measurements, the system remains on a low-dimensional submanifold of configuration space. • Measurements are interactions in which many degrees of freedom become relevant. √ O ( N ) • After measurement, different states are a distance apart. This implies no interference, since: 2 ℜ ¯ ψ 1 ( x ) ψ 2 ( x ) ≈ 0

  16. An unmeasured interaction

  17. An unmeasured interaction

  18. The measurement process

  19. The measurement Interaction Switched On process

  20. A realistic example

  21. The measurement process • Want to measure the position of a quantum particle. • Measurement apparatus is a many-body quantum fluid (BEC), which interacts with particle. • Use conventional methods to measure position of the splash.

  22. The measurement process • Want to measure the position of a quantum particle. • Measurement apparatus is a many-body quantum fluid (BEC), which interacts with particle. • Use conventional methods to measure position of the splash. The particle is here.

  23. Many Body Schrodinger equation   p ( x − y j ) + 1  − ∆ x 2 M + − ∆ y � �  ψ ( x, � V N V N i ∂ t ψ ( x, � y, t ) = 2 m + s ( y i − y j ) y, t ) 2 j i � = j N � ψ 0 ( x, y ) = φ ( x ) χ ( y j ) j =1 = Position of particle to be measured x = Position of j -th fluid particle y j V N P ( x − y j ) = Interaction between particle and fluid V N S ( y i − y j ) = Internal fluid interaction

  24. Hydrodynamic Formulation ∂ t ρ ( x, � y, t ) + ∇ · [ ρ ( x, � y, t ) v ( x, � y, t )] = 0 − � ∂ t � v ( x, � y, t ) + � v ( x, � y, t ) · ∇ � v ( x, � y, t ) = ∇ V ( x, � y ) y, t ) | 2 ρ ( x, � y, t ) = | ψ ( x, � � ∇ = ( M − 1 ∇ x , m − 1 ∇ � y 1 , . . . , m − 1 ∇ � y N ), particle and the mass of the light particle. N � � y j ) + 1 V N V N V ( x, � y ) = p ( x − � s ( � y j ) y i − � 2 j =1 i � = j � � ρ ( x, � y, t ) ρ ( x, � y, t ) + ∆ x + ∆ y � � ρ ( x, � y, t ) ρ ( x, � y, t ) M m

  25. Multiconfiguration Reduction • Many-Body Schrodinger equation is hard. Solution: derive reduced equation. ρ ( x, y 1 , t ) , v x ( x, y 1 , t ) and v y ( x, y 1 , t ) • Reduced variables N � ρ ( x, � y, t ) = ρ ( x, � y j , t ) j =1   N � v ( x, , t ) = v x ( x, y j , t ) , v y ( x, y 1 , t ) , . . . , v y ( x, y N , t ) �   j =1

  26. Derivation of reduced equation � � � N � ∂ t ρ ( x, � y j , t ) + ρ ( x, � y j , t ) v x ( x, � y l , t ) ∇ x · ρ ( x, � y j , t ) � l =1 � � N + 1 � N ρ ( x, � y j , t ) ∇ x · ρ ( x, � y j , t ) � v x ( x, � y l , t ) l =1 � + ∇ y j · [ ρ ( x, � y j , t ) � v y ( x, � y j , t )] = 0 The velocity equation can be rewritten as follows:

  27. Derivation of reduced equation � � � N � ∂ t ρ ( x, � y j , t ) + ρ ( x, � y j , t ) v x ( x, � y l , t ) ∇ x · ρ ( x, � y j , t ) � l =1 � � N + 1 � N ρ ( x, � y j , t ) ∇ x · ρ ( x, � y j , t ) � v x ( x, � y l , t ) l =1 � + ∇ y j · [ ρ ( x, � y j , t ) � v y ( x, � y j , t )] = 0 We will reduce this The velocity equation can be rewritten as follows:

  28. Derivation of reduced equation • Equation for velocities: � N N � � � � v x ( x, � y j , t ) + v x ( x, � y k , t ) v x ( x, � y j , t ) ∂ t � � · ∇ x � j =1 k =1 � = −∇ x + � v y ( x, � y j , t ) · ∇ y j � v x ( x, � y j , t ) M V ( x, � y ) � N � � v y ( x, � y j , t ) + v x ( x, � y k , t ) v y ( x, � y j , t ) ∂ t � � · ∇ x � k =1 y j , t ) = −∇ � y j + � v y ( x, � y j , t ) · ∇ y � v y ( x, � m V ( x, � y ) (5b)

  29. Derivation of reduced equation • Equation for velocities: � N N � � � � v x ( x, � y j , t ) + v x ( x, � y k , t ) v x ( x, � y j , t ) ∂ t � � · ∇ x � j =1 k =1 � = −∇ x + � v y ( x, � y j , t ) · ∇ y j � v x ( x, � y j , t ) M V ( x, � y ) � N � � v y ( x, � y j , t ) + v x ( x, � y k , t ) v y ( x, � y j , t ) ∂ t � � · ∇ x � k =1 y j , t ) = −∇ � y j + � v y ( x, � y j , t ) · ∇ y � v y ( x, � m V ( x, � y ) (5b)

  30. Mean field for velocity • We need not consider a general point in configuration space, only typical ones. • Probability distribution of fluid particle: ρ ( x, y j , t ) dy j � ρ ( x, y j , t ) dy j • Central limit theorem: N � v x ( x, y, t ) ρ ( x, y, t ) dy � v x ( x, y j , t ) → ( N − 1) � ρ ( x, y, t ) dy j =2

  31. Mean Field for Potential N � � y j ) + 1 V N V N V ( x, � y ) = p ( x − � s ( � y j ) y i − � 2 j =1 i � = j � � ρ ( x, � y, t ) ρ ( x, � y, t ) + ∆ x + ∆ y � � ρ ( x, � y, t ) ρ ( x, � y, t ) M m • Similar tricks can be used for the potential: V N � s ( y 1 − y ) ρ ( x, y, t ) dy � V N s ( y 1 − y j ) → ( N − 1) � ρ ( x, y, t ) dy j � =1

  32. Probably Approximately Correct • How accurate is this? • Mcdiarmid’s inequality. For a vector of i.i.d. variables, if sup | f ( x 1 , . . . , x i − 1 , x i , x i +1 , x N ) − f ( x 1 , . . . , x i − 1 , x i , ˆ x i +1 , x N ) | < C x, ˆ x i • then: − 2 ǫ 2 � � P ( | f ( � x ) − E [ f ( � x )] | > ǫ ) ≤ 2 exp NC 2

  33. Probably Approximately Correct • Implication:   N � V N p ( x − y ) ρ ( x, y ) dy � V N  | p ( x − y j ) − ( N − 1) | ≥ N ǫ P  � ρ ( x, y ) dy j =1 2 ǫ 2 N � � ≤ 2 exp − || V N p ( x ) || L ∞ • The probability distribution is w.r.t. conditional distribution of fluid particle: ρ ( x, y ) P ( y ) = � ρ ( x, y ) dy

  34. Y-indepence of equations • Equations depend (to order O(N)) not on but on it’s expected v x ( x, y, t ) value: �� v x ( x, y ′ , t ) ρ ( x, y ′ , t ) dy ′ � � ∂ t ρ ( x, y, t ) + ( N − 1)( ∇ x · ρ ( x, y, t )) d � y l � ρ ( x, y ′ , t ) dy ′ �� v x ( x, y ′ , t ) ρ ( x, y ′ , t ) dy ′ � � + ( N − 1) ρ ( x, y, t ) ∇ x · d � y l � ρ ( x, y ′ , t ) dy ′ + ∇ x · [ ρ ( x, y, t ) � v ( x, y, t )] + ∇ y [ ρ ( x, y, t ) � v y ( x, y, t )] = 0 (7)

  35. Y-indepence of equations • Equations depend (to order O(N)) not on but on it’s expected v x ( x, y, t ) value: N � v x ( x, y ′ , t ) ρ ( x, y ′ , t ) dy ′ �� � � � v x ( x, � y j , t ) + ( N − 1) v x ( x, � y j , t ) ∂ t � · ∇ x � � ρ ( x, y ′ , t ) dy ′ j =1 � + � v x ( x, � y j , t ) · ∇ x � v x ( x, � y j , t ) + � v y ( x, � y j , t ) · ∇ y � v x ( x, � y j , t ) N � � −∇ x − ∇ x � M V N = p ( x − � y j ) M V q j =1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend