virtual inertia emulation and placement in power grids
play

Virtual Inertia Emulation and Placement in Power Grids S eminaire - PowerPoint PPT Presentation

At the beginning of power systems was . . . Virtual Inertia Emulation and Placement in Power Grids S eminaire dAutomatique du Plateau de Saclay Laboratoire de Signaux et Syst` emes du Supelec Florian D orfler At the beginning was the


  1. At the beginning of power systems was . . . Virtual Inertia Emulation and Placement in Power Grids S´ eminaire d’Automatique du Plateau de Saclay Laboratoire de Signaux et Syst` emes du Supelec Florian D¨ orfler At the beginning was the synchronous machine : P generation M d ω dt ω ( t ) = P generation ( t ) − P demand ( t ) change of kinetic energy = instantaneous power balance P demand Fact: the AC grid & all of power system operation has been designed around synchronous machines. 2 / 35 Operation centered around bulk synchronous generation Distributed/non-rotational/renewable generation on the rise 50.02 50.02 f [Hz] f [Hz] Primary Control Tertiary Control 50.01 50.01 50.00 50.00 f - Setpoint 49.99 49.99 49.98 49.98 Secondary Control 49.97 49.97 49.96 49.96 PP - Outage Oscillation/Control 49.95 49.95 PS Oscillation 49.94 49.94 49.93 49.93 Mechanical Inertia 49.92 49.92 49.91 49.91 49.90 49.90 49.89 49.89 49.88 49.88 16:45:00 16:45:00 16:50:00 16:50:00 16:55:00 16:55:00 17:00:00 17:00:00 17:05:00 17:05:00 17:10:00 17:10:00 17:15:00 17:15:00 8. Dezember 2004 8. Dezember 2004 Frequency Mettlen, Switzerland Frequency Athens Source: W. Sattinger, Swissgrid Source: Renewables 2014 Global Status Report 3 / 35 4 / 35

  2. A few (of many) game changers . . . Fundamental challenge: operation of low-inertia systems synchronous generator new workhorse scaling We slowly loose our giant electromechanical low-pass filter: P generation M d ω dt ω ( t ) = P generation ( t ) − P demand ( t ) change of kinetic energy = instantaneous power balance P demand location & distributed implementation Almost all operational problems can principally be resolved . . . but one (?) 5 / 35 6 / 35 Low-inertia stability: # 1 problem of distributed generation Virtual inertia emulation devices commercially available, required by grid-codes or incentivized through markets 2001 2002 2003 2004 2005 2006 2007 2008 !""" #$%&'%(#!)&' )& *)+"$ ','#"-'. /)01 23. &)1 2. -%, 2456 5676 2009 30000 2010 !"#$%&'"'() %* +$,(-.'() /'-#%(-' !89:;8;<=><? />@=AB: !<;@=>B >< CD!EFGBH;I 25000 .( 0.1$%2$.3- 4-.(2 5.$)6,7 !('$)., +><I *JK;@ E;<;@B=>J< 20000 8.".-9 :%(. ! "#$%&'# (&)*&+! ,--- ; :6$<,(,$,<,(, =%%77, ! (&)*&+! ,--- ; ,(3 Duration [s] 06>67 ?@ ?9,(3%$>,$ ! (&)*&+! ,--- -JLB88BI@;MB DBNLB@> -J?LBIIB8 %@B<> ! "#$%&'# (&)*&+! ,--- . B<I "LBO D1 ":F'BBIB<P ! "&'./+ (&)*&+! ,--- 15000 Events [-] !"#$%&'()*+,-+#'"(./#0*/1(2-33/*04($(5&*0-$1(( Virtual synchronous generators: A survey and new perspectives 10000 6#+*0&$(7*/8&9+9(:"(!&;0*&:-0+9(<#+*="(20/*$=+( Hassan Bevrani a,b, ⇑ , Toshifumi Ise b , Yushi Miura b 5000 a Dept. of Electrical and Computer Eng., University of Kurdistan, PO Box 416, Sanandaj, Iran 0/(6;/1$0+9(7/>+*(2";0+%;(( b Dept. of Electrical, Electronic and Information Eng., Osaka University, Osaka, Japan 0 !""" #$%&'%(#!)&' )& *)+"$ ','#"-'. /)01 23. &)1 2. -%, 2456 ?$-0@&+*(!+1&11+A( !"#$"%&'())) A(B*-#/()*$#C/&;A( *"+,-%'!"#$"%&'())) A($#9(?&11+;(D$1$*$#=+( Number * 10 !789:;< "=>?<:;@7 (@7:9@? ':9<:8AB C@9 Months of the year !"#$%&#'$%()*+'",'"%-#,.%/#",012%3#*',#4% /'(DE/F( #9<7G=;GG;@7 'BG:8=G # frequency violations in Nordic grid 5,)"16'% Number * 10 Duration H;8I8; JK>. (<=LI8?? F1 M@@:K. N9<;7 *1 %O<=. %7O98P H1 $@GQ@8. <7O (K9;G N1 M9;AK: 7898:%+1*%;'<'*=''4> ? %@%58;8A8%$'%A11* ? @% !"#$%&'("()"&*'+,,, @%98%/1"'21 B %1*$%38%/#<<4.'" C @% (source: ENTSO-E) same in Switzerland (source: Swissgrid) !"#$%&'("()"&'+,,, % M d dt ω ( t ) = P generation ( t ) − P demand ( t ) . . . essentially D-control inertia is shrinking, time-varying, & localized, . . . & increasing disturbances ⇒ plug-&-play (decentralized & passive), grid-friendly, user-friendly, . . . Solutions in sight: none really . . . other than emulating virtual inertia through fly-wheels, batteries, super caps, HVDC, demand-response, . . . it eal ⇒ today: where to do it? how to do it properly? 7 / 35 8 / 35 15

  3. Outline Introduction Novel Virtual Inertia Emulation Strategy inertia emulation Optimal Placement of Virtual Inertia Conclusions Classification & choice of actuators Inertia emulation & virtual synchronous machines 1 naive D-control on ω ( t ): M d dt ω ( t ) = P generation ( t ) − P demand ( t ) 2 more sophisticated emulation of virtual synchronous machine Contents lists available at ScienceDirect Electrical Power and Energy Systems journal homepage: www.elsevier.com/locate/ijepes Virtual synchronous generators: A survey and new perspectives Hassan Bevrani a,b, ⇑ , Toshifumi Ise b , Yushi Miura b a Dept. of Electrical and Computer Eng., University of Kurdistan, PO Box 416, Sanandaj, Iran b Dept. of Electrical, Electronic and Information Eng., Osaka University, Osaka, Japan 3 everything in between . . . and much more . . . (source: Stephan Masselis) ⇒ by measuring AC current/voltage/power/frequency ⇒ software model of virtual machine provides converter setpoints each of these (& far more) have been proposed for virtual inertia emulation ⇒ actuation via modulation (switching) or DC injection (batteries etc.) 9 / 35 10 / 35

  4. Challenges in real-world converter implementations Averaged inverter model Real Time Simulation of a Power System with i αβ R L i load Contents lists available at ScienceDirect DC cap & AC filter equations: VSG Hardware in the Loop Electrical Power and Energy Systems i x i c v dc = − G dc v dc + i dc − 1 + + journal homepage: www.elsevier.com/locate/ijepes Vasileios Karapanos, Sjoerd de Haan, Member , IEEE , Kasper Zwetsloot 2 m ⊤ i αβ Faculty of Electrical Engineering, Mathematics and Computer Science C dc ˙ Delft University of Technology Delft, the Netherlands Virtual synchronous generators: A survey and new perspectives v αβ i dc v x E-mails: vkarapanos@gmail.com, v.karapanos@tudelft.nl, s.w.h.dehaan@tudelft.nl G dc C dc C Hassan Bevrani a,b, ⇑ , Toshifumi Ise b , Yushi Miura b C ˙ v αβ = − i load + i αβ To better study and witness the effects of virtual inertia, the a Dept. of Electrical and Computer Eng., University of Kurdistan, PO Box 416, Sanandaj, Iran Abstract- The method to investigate the interaction between a hardware of a real VSG should be tested within a power b Dept. of Electrical, Electronic and Information Eng., Osaka University, Osaka, Japan Virtual Synchronous Generator (VSG) and a power system is system. Investigating the interaction between a real VSG and − − i αβ = − Ri αβ + 1 presented here. A VSG is a power-electronics based device that a power system is not easy as a power system cannot be L ˙ 2 mv dc − v αβ 1 delays in measurement acquisition, signal processing, & actuation modulation: i x = 1 2 m ⊤ i αβ , v x = 1 passive: ( i dc , i load ) → ( v dc , v αβ ) 2 mv dc 2 accuracy in AC measurements (averaged over ≈ 5 cycles) θ 3 constraints on currents, voltages, power, etc. model of a ˙ θ = ω � − sin( θ ) � synchronous ω = − D ω + τ m + i ⊤ M ˙ αβ L m i f 4 guarantees on stability and robustness cos( θ ) generator i f C ˙ v αβ = − G load v αβ + i αβ � − sin( θ ) � L s ˙ i αβ = − Ri αβ − v αβ − ω L m i f cos( θ ) today: use DC measurement, exploit analog storage, & passive control �������������������������������������� ���� 11 / 35 12 / 35 See the similarities & the differences ? i αβ R L i load DC cap & AC filter equations: i x i c v dc = − G dc v dc + i dc − 1 + + 2 m ⊤ i αβ C dc ˙ v αβ v x standard power electronics control would continue by i dc G dc C dc C C ˙ v αβ = − i load + i αβ − − i αβ = − Ri αβ + 1 L ˙ 2 mv dc − v αβ 1 constructing voltage/current/power references (e..g, droop, synchronous machine emulation, etc.) modulation: i x = 1 2 m ⊤ i αβ , v x = 1 passive: ( i dc , i load ) → ( v dc , v αβ ) 2 mv dc 2 tracking these references at the converter terminals θ typically by means of cascaded PI controllers model of a ˙ θ = ω � − sin( θ ) � synchronous ω = − D ω + τ m + i ⊤ M ˙ αβ L m i f cos( θ ) generator let’s do something different (smarter?) today . . . i f C ˙ v αβ = − G load v αβ + i αβ � − sin( θ ) � L s ˙ i αβ = − Ri αβ − v αβ − ω L m i f cos( θ ) 13 / 35 14 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend