vibrations in jammed ibrations in jammed solids beyond
play

Vibrations in jammed ibrations in jammed solids: Beyond linear - PowerPoint PPT Presentation

Vibrations in jammed ibrations in jammed solids: Beyond linear solids: Beyond linear response esponse trand 1 1 Thibault Bertrand Thibault Ber Carl F. Schreck 1 Corey S. OHern 1 Mark D. Shattuck 1,2 1 Yale University 2 City College of the


  1. Vibrations in jammed ibrations in jammed solids: Beyond linear solids: Beyond linear response esponse trand 1 1 Thibault Bertrand Thibault Ber Carl F. Schreck 1 Corey S. O’Hern 1 Mark D. Shattuck 1,2 1 Yale University 2 City College of the City University of New York Physics of Glassy and Granular Materials YITP 2013

  2. Nonlinear Effects in Granular Solids Nonlinear vibrational properties of granular solids – Vibration dampening, solitary modes, dispersion, deviations from elasticity theory Non-linear effects in real granular packings: • Breaking existing and forming new contacts • Non linear interactions (Hertzian) • Sliding and rolling friction • Energy dissipation Isolate the effects of fluctuations in the See Carl Schreck’s poster network of contacts! for details on Hertzian interactions

  3. Absence of Linear Response Dynamical Matrix: ◆ 2 ✓ ✓ ◆ 1 − r ij 1 − r ij δ ∼ ∆ φ 1 / 2 V ( r ij ) = ✏ Θ 2 � ij � ij ✓ ∂ 2 V ◆ M ↵ , � = , ∂ r ↵ ∂ r � ~ r = ~ r 0 Diagonalize the dynamical matrix to access eigenfrequencies: 2 ✏ e i , i ∈ { 1 , . . . , 2 N } ˆ ✏ λ i = m ω 2 i

  4. Absence of Linear Response Temperature allow particle to explore its ¡ δ surrounding on a distance δ : σ r 1 2 T 2 k δ 2 = T δ = k σ e ff = σ − δ Apparent diameter of a particle: ◆ 2 ✓ 1 − δ φ e ff = φ σ φ J Need to increase the volume fraction φ = ⌘ 2 to rejam the system at a given T: q ⇣ 2 T 1 − k σ 2

  5. Absence of Linear Response    φ J φ = ⌘ 2 q ⇣ 2 T ? 1 −   k σ 2 

  6. Generating Jammed Packings

  7. Beyond the Harmonic Approximation… • Molecular Dynamics Simulation • Constant energy • Linear Spring Repulsion • Frictionless • No dissipation • At t=0, add temperature N = 20

  8. Non-harmonicity in Disordered Solids Pr Protocol: otocol: N ¡= ¡12 ¡ • Perturb along eigenmode by δ Δφ ¡= ¡10 -­‑5 ¡ • Let the system evolve at constant energy mode ¡= ¡6 ¡ • Study the FT of the particle motion First ¡contact ¡breaks! ¡ Schreck, ¡Bertrand, ¡Sha.uck, ¡O’Hern, ¡Phys. ¡Rev. ¡Le+. ¡107 ¡(2011) ¡078301 ¡

  9. Beyond the Harmonic Approximation… Under har harmonic appr monic approximation: oximation: M = k B T C − 1 V = 1 N h vv T i V = k B T I M = VC − 1 Solution 1: probing the correlation of particles Solution 1: displacements via Solution 2: Solution 2: looking for vibrational frequencies emerging in the Fourier Transform of the velocity autocorrelation function via P N i =1 h v i ( t ) . v i (0) i 0 d ( t ) = ˜ d ( ω ) = F [ d ( t )] P N i =1 h v i (0) . v i (0) i 0

  10. (a) Assessing the Vibrational 0 10 Frequencies − 2 10 D ( ω )  − 4 10   − 6 10 (a) (b) 0 0.5 1 1.5 2 ω   (b) 0 10 − 2 10 D ( ω ) − 4 10  − 6 10 0 0.5 1 1.5 2 ω

  11. Assessing the Vibrational Frequencies 0 10 Non trivial evolution of the covariance matrix prediction and Fourier transform of Velocity autocorrelation − 2 function w/ T 10 D ( ω ) − 4 10 − 6 10 0 0.5 1 1.5 2 ω

  12. Temperature Dependence of the Frequencies   x ¡     k − ω d ω ∗ ω k ( T ) = ω d k k + ⌘ ν ⇣ √ 1 + l c ( ∆ φ ) / T

  13. Temperature Dependence of the Frequencies   x ¡    

  14. Testing Resonance in the Modes h K pp i • Drive one particle • Record average kinetic energy per particle in steady state N = 10 ∆ φ = 10 − 8

  15. Rearrangement probability       Packing did not did not rearrange earrange , relate to the same inherent     structure     Packing rearranged earranged , relate to a different  inherent structure           100 snapshot over the  course of the   simulation                  

  16.                   Introducing a new Phase Diagram                   z iso = dN − d + 1                                                                                ICS = Iso-coordinated Solid HCS = Hypo-coordinated Solid HPL = Hard Particle Liquid   DL = Dense Liquid

  17. Density of States         ICS ¡ x ¡                                                                 HPL ¡ HCS ¡ x ¡ x ¡                       

  18. Conclusions & Future directions • No linear response for a wide range of parameters • Need of a new description for the vibrational dynamics of jammed packings • Transition from resonant to non- resonant modes • Investigating effect of friction, particle shape and order “Vibrations in jammed solids: Beyond linear response”, T.Bertrand, C.F.Schreck, C.S.O’Hern and M.D.Shattuck, submitted to PRL (arXiv:1307.0440)

  19. Acknowledgements • Corey O’Hern • Mark Shattuck • Carl Schreck Thank you! • The O’Hern Group • Yale High Performance Computing Grants: DTRA Grant No. 1-10-1-0021 NSF MRSEC DMR-1119826

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend