very rare exclusive radiative decays of w and z bosons in
play

Very rare, exclusive radiative decays of W and Z bosons in QCD - PowerPoint PPT Presentation

Very rare, exclusive radiative decays of W and Z bosons in QCD factorization XIIth Annual Workshop on Soft- Matthias K onig Collinear Effective Theory 2015 Johannes Gutenberg-University Sante Fe (NM) Mainz Motivation One of the main


  1. The factorization formula Which of the Dirac structures Γ i contributes, depends on the type of meson and there is exactly one Dirac structure for a given meson. We denote the corresponding Wilson coefficient by C M ( t , µ ) and define the Fourier-transformed Wilson coefficient, called the hard function, as: � dt C M ( t , µ ) e ixt ¯ n · k H M ( x , µ ) = Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  2. The factorization formula Which of the Dirac structures Γ i contributes, depends on the type of meson and there is exactly one Dirac structure for a given meson. We denote the corresponding Wilson coefficient by C M ( t , µ ) and define the Fourier-transformed Wilson coefficient, called the hard function, as: � dt C M ( t , µ ) e ixt ¯ n · k H M ( x , µ ) = The factorization formula now reads: 1 power � A = − if M E dx H M ( x , µ ) φ M ( x , µ ) + corrections 0 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  3. The factorization formula Define : Projectors M M , can be applied to partonic amplitudes directly. In a practical calculation each Feynman diagram gives an expression of the form: ¯ u ( k 1 ) A ( q , k 1 , k 2 ) v ( k 2 ) = Tr [ v ( k 2 )¯ u ( k 1 ) A ( q , k 1 , k 2 )] Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  4. The factorization formula Define : Projectors M M , can be applied to partonic amplitudes directly. In a practical calculation each Feynman diagram gives an expression of the form: ¯ u ( k 1 ) A ( q , k 1 , k 2 ) v ( k 2 ) = Tr [ v ( k 2 )¯ u ( k 1 ) A ( q , k 1 , k 2 )] The projection is then: 1 � ¯ u ( k 1 ) A ( q , k 1 , k 2 ) v ( k 2 ) → dx Tr [ M M ( k , x , µ ) A ( q , k 1 , k 2 )] 0 The projector M M depends on the type of meson (pseudoscalar, vector meson [longitudinal/tranverse polarization]). Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  5. The factorization formula For a pseudoscalar meson, the projector to twist-3-order is given by: M P ( k , x , µ ) = if P � � / k γ 5 φ P ( x , µ ) − µ P ( µ ) γ 5 φ p ( x , µ ) 4 k µ ¯ n ν φ ′ σ ( x , µ ) + i σ µν k µ φ σ ( x µ ) ∂ � � − i σ µν + 3-part. k · ¯ n 6 6 ∂ k ⊥ ν where φ p ( x , µ ) = 1 φ σ ( x , µ ) = 6 x (1 − x ) when three-particle LCDAs are neglected (Wandzura-Wilczek approximation). [Wandzura, Wilczek ( 1977 ), Phys. Lett. B 72, 195] Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  6. QCD factorization Light cone distributions for mesons Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  7. Gegenbauer expansion of the LCDAs The LCDA can be interpreted as the amplitude for finding a quark with longitudinal momentum fraction x Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  8. Gegenbauer expansion of the LCDAs The LCDA can be interpreted as the amplitude for finding a quark with longitudinal momentum fraction x Defined by local matrix element (here example for pseudo-scalar) 1 n ) / n ¯ � 2 γ 5 [ t ¯ dx e ixt ¯ n · k φ M ( x , µ ) � P ( k ) | ¯ q ( t ¯ n , 0] q (0) | 0 � = − if M E 0 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  9. Gegenbauer expansion of the LCDAs The LCDA can be interpreted as the amplitude for finding a quark with longitudinal momentum fraction x Defined by local matrix element (here example for pseudo-scalar) 1 n ) / n ¯ � 2 γ 5 [ t ¯ dx e ixt ¯ n · k φ M ( x , µ ) � P ( k ) | ¯ q ( t ¯ n , 0] q (0) | 0 � = − if M E 0 For light mesons information about the LCDAs has to be extracted from lattice QCD or sum rules. For mesons containing a heavy quark (or for heavy quarkonia), this can be addressed with HQET (or NRQCD). Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  10. Gegenbauer expansion of the LCDAs We expand the LCDAs in the basis of Gegenbauer polynomials: ∞ � � � a M n ( µ ) C (3 / 2) φ M ( x , µ ) = 6 x (1 − x ) 1 + (2 x − 1) n n =1 where C ( α ) ( x ) are the Gegenbauer polynomials. The scale-dependence of n the LCDA is in the Gegenbauer moments a M n ( µ ) Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  11. Gegenbauer expansion of the LCDAs We expand the LCDAs in the basis of Gegenbauer polynomials: ∞ � � � a M n ( µ ) C (3 / 2) φ M ( x , µ ) = 6 x (1 − x ) 1 + (2 x − 1) n n =1 where C ( α ) ( x ) are the Gegenbauer polynomials. The scale-dependence of n the LCDA is in the Gegenbauer moments a M n ( µ ) We need φ at the scale µ ∼ M Z while the a M n ( µ ) are obtained at µ ∼ Λ QCD Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  12. Gegenbauer expansion of the LCDAs We expand the LCDAs in the basis of Gegenbauer polynomials: ∞ � � � a M n ( µ ) C (3 / 2) φ M ( x , µ ) = 6 x (1 − x ) 1 + (2 x − 1) n n =1 where C ( α ) ( x ) are the Gegenbauer polynomials. The scale-dependence of n the LCDA is in the Gegenbauer moments a M n ( µ ) We need φ at the scale µ ∼ M Z while the a M n ( µ ) are obtained at µ ∼ Λ QCD → RG evolution important AND works in our favor Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  13. RG evolution of the LCDAs The Gegenbauer expansion yields a diagonal scale-evolution of the coefficients: � α s ( µ ) � γ n / 2 β 0 a M a M n ( µ ) = n ( µ 0 ) α s ( µ 0 ) Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  14. RG evolution of the LCDAs The Gegenbauer expansion yields a diagonal scale-evolution of the coefficients: � α s ( µ ) � γ n / 2 β 0 a M a M n ( µ ) = n ( µ 0 ) α s ( µ 0 ) Every anomalous dimension γ n is strictly positive ⇒ a M n ( µ → ∞ ) → 0 ⇒ φ M ( x , µ → ∞ ) → 6 x (1 − x ) Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  15. RG evolution of the LCDAs a) K LCDA b) J /ψ LCDA c) B LCDA LCDAs for mesons at different scales, dashed lines: φ M ( x , µ = µ 0 ) , solid lines: φ M ( x , µ = m Z ) , grey dotted lines: φ M ( x , µ → ∞ ) Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  16. RG evolution of the LCDAs a) K LCDA b) J /ψ LCDA c) B LCDA LCDAs for mesons at different scales, dashed lines: φ M ( x , µ = µ 0 ) , solid lines: φ M ( x , µ = m Z ) , grey dotted lines: φ M ( x , µ → ∞ ) At high scales compared to Λ QCD (e.g. µ ∼ m Z ) the sensitivity to poorly-known a M is greatly reduced! n Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  17. Heavy mesons: quarkonia For heavy quarkonium states M ∼ ( Q ¯ Q ) the LCDA peaks at x = 1 / 2 . In the limit of m Q → ∞ , the width of the LCDA vanishes and φ M → δ ( x − 1 2 ) . Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  18. Heavy mesons: quarkonia For heavy quarkonium states M ∼ ( Q ¯ Q ) the LCDA peaks at x = 1 / 2 . In the limit of m Q → ∞ , the width of the LCDA vanishes and φ M → δ ( x − 1 2 ) . Using NRQCD, the LCDA can be related to a local matrix element [Caswell, Lepage ( 1986 ), Phys. Lett. B 167, 437] [Bodwin, Braaten, Lepage ( 1995 ), Phys. Rev. D 51, 1125] One finds: 1 dx (2 x − 1) 2 φ M ( x , µ 0 ) = � v 2 � M � + O ( v 4 ) 3 0 [Braguta, Likhoded, Luchinsky ( 2007 ), Phys. Lett. B 646, 80] Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  19. Heavy mesons: quarkonia For heavy quarkonium states M ∼ ( Q ¯ Q ) the LCDA peaks at x = 1 / 2 . In the limit of m Q → ∞ , the width of the LCDA vanishes and φ M → δ ( x − 1 2 ) . Using NRQCD, the LCDA can be related to a local matrix element [Caswell, Lepage ( 1986 ), Phys. Lett. B 167, 437] [Bodwin, Braaten, Lepage ( 1995 ), Phys. Rev. D 51, 1125] One finds: 1 dx (2 x − 1) 2 φ M ( x , µ 0 ) = � v 2 � M � + O ( v 4 ) 3 0 [Braguta, Likhoded, Luchinsky ( 2007 ), Phys. Lett. B 646, 80] Our model at the low scale: � − 6( x − 1 2 ) 2 � φ M ( x , µ 0 ) = x (1 − x ) exp × normalization � v 2 � Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  20. Heavy mesons: heavy-light states For heavy-light mesons M ∼ ( q ¯ Q ) , one defines: 1 dx φ M ( x , µ 0 ) m M � = λ M ( µ 0 ) + . . . x 0 [Beneke, Buchalla, Neubert, Sachrajda ( 1999 ), Phys. Rev. Lett. 83, 1914] where m M is the meson mass and the parameter λ M is a (poorly known) hadronic parameter and we have to use estimates. [Braun, Ivanov, Korchemsky ( 2004 ), Phy. Rev. D 69, 034014] [Ball, Jones, Zwicky ( 2007 ), Phys. Rev. D 75, 054004] Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  21. Heavy mesons: heavy-light states For heavy-light mesons M ∼ ( q ¯ Q ) , one defines: 1 dx φ M ( x , µ 0 ) m M � = λ M ( µ 0 ) + . . . x 0 [Beneke, Buchalla, Neubert, Sachrajda ( 1999 ), Phys. Rev. Lett. 83, 1914] where m M is the meson mass and the parameter λ M is a (poorly known) hadronic parameter and we have to use estimates. [Braun, Ivanov, Korchemsky ( 2004 ), Phy. Rev. D 69, 034014] [Ball, Jones, Zwicky ( 2007 ), Phys. Rev. D 75, 054004] As model LCDA we employ � − x m M � φ M ( x , µ 0 ) = x (1 − x ) exp × normalization λ M [Grozin, Neubert ( 1997 ), Phys. Rev. D 55, 272] Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  22. Heavy meson LCDAs and RGE Heavy meson LCDAs at the low scale µ 0 = 1 GeV : � � − x m M φ M ( x , µ 0 ) = x (1 − x ) exp × normalization λ M − 6( x − 1 2 ) 2 � � φ M ( x , µ 0 ) = x (1 − x ) exp × normalization � v 2 � Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  23. Heavy meson LCDAs and RGE Heavy meson LCDAs at the low scale µ 0 = 1 GeV : � � − x m M φ M ( x , µ 0 ) = x (1 − x ) exp × normalization λ M − 6( x − 1 2 ) 2 � � φ M ( x , µ 0 ) = x (1 − x ) exp × normalization � v 2 � The Gegenbauer expansion can be inverted to give: 1 2(2 n + 3) � dx C (3 / 2) a M n ( x , µ ) = (2 x − 1) φ M ( x , µ ) n 3( n + 1)( n + 2) 0 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  24. Heavy meson LCDAs and RGE Heavy meson LCDAs at the low scale µ 0 = 1 GeV : � � − x m M φ M ( x , µ 0 ) = x (1 − x ) exp × normalization λ M − 6( x − 1 2 ) 2 � � φ M ( x , µ 0 ) = x (1 − x ) exp × normalization � v 2 � The Gegenbauer expansion can be inverted to give: 1 2(2 n + 3) � dx C (3 / 2) a M n ( x , µ ) = (2 x − 1) φ M ( x , µ ) n 3( n + 1)( n + 2) 0 For light mesons, only the first few moments are known (we use up to n = 2 ). For heavy mesons, we calculate the first 20 Gegenbauer moments to resolve the peak structure of the LCDAs. Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  25. Decays of electroweak gauge bosons Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  26. The Z → M + γ decay amplitude Diagrams at O ( α s ) : γ Z 0 Z 0 γ + analogous QCD corrections for second graph Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  27. The Z → M + γ decay amplitude Let us go through the steps of the calculation: Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  28. The Z → M + γ decay amplitude Let us go through the steps of the calculation: Compute the hard interactions at desired loop-order: xk γ + xk Z Z ¯ xk γ xk ¯ xk ) κ ( x ) � γ ν � v q − a q γ 5 � p γ µ � i A ∝ ¯ q ( xk ) q (¯ / x + κ (¯ x ) � p ′ γ ν � v q − a q γ 5 �� γ µ / ¯ q ( xk ) q (¯ xk ) ¯ x Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  29. The Z → M + γ decay amplitude Let us go through the steps of the calculation: Compute the hard interactions at desired loop-order: xk γ + xk Z Z xk ¯ γ xk ¯ contains O ( α s ) corrections xk ) κ ( x ) � γ ν � v q − a q γ 5 � p γ µ � i A ∝ ¯ q ( xk ) q (¯ / x + κ (¯ x ) � p ′ γ ν � v q − a q γ 5 �� γ µ / ¯ q ( xk ) q (¯ xk ) ¯ x Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  30. The Z → M + γ decay amplitude Dirac structure of the amplitude is of the form: p γ µ − a q γ ν / Γ = v q γ ν / p γ µ γ 5 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  31. The Z → M + γ decay amplitude Dirac structure of the amplitude is of the form: p γ µ − a q γ ν / Γ = v q γ ν / p γ µ γ 5 The leading-twist two-particle projectors are: M P = i f P k γ 5 4 φ P ( x , µ ) / M V = − i f V 4 φ V ( x , µ ) / k V = i f ⊥ V ( µ ) ǫ V ∗ M ⊥ φ ⊥ V ( x , µ ) / k / ⊥ 4 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  32. The Z → M + γ decay amplitude Dirac structure of the amplitude is of the form: p γ µ − a q γ ν / Γ = v q γ ν / p γ µ γ 5 The leading-twist two-particle projectors are: M P = i f P k γ 5 4 φ P ( x , µ ) / M V = − i f V 4 φ V ( x , µ ) / k V = i f ⊥ V ( µ ) ǫ V ∗ M ⊥ φ ⊥ V ( x , µ ) / k / ⊥ 4 At leading twist only P and V � allowed! (recall: projecting involves Tr[ M Γ] ) Subleading twist contributions strongly power-suppressed! Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  33. The Z → M + γ decay amplitude At the end of the day, we find: � � k µ q ν ε α Z ε ∗ β � γ − q · ε Z k · ε ∗ � egf M γ γ F M F M i A = ± i ǫ µναβ 1 − ε Z · ε ∗ 2 2 cos θ W k · q k · q with the form factors ∞ 1 = Q M � F M 6 [ I M + ( m Z ) + ¯ I M C (+) 2 n ( m Z , µ ) a M + ( m Z )] = Q M 2 n ( µ ) n =0 ∞ 2 = Q ′ � − ( m Z ) + ¯ − ( m Z )] = −Q ′ C ( − ) F M 6 [ I M M I M 2 n +1 ( m Z , µ ) a M 2 n +1 ( µ ) M n =0 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  34. The Z → M + γ decay amplitude At the end of the day, we find: � � k µ q ν ε α Z ε ∗ β � γ − q · ε Z k · ε ∗ � egf M γ γ F M F M i A = ± i ǫ µναβ 1 − ε Z · ε ∗ 2 2 cos θ W k · q k · q + for pseudoscalar, - for vector with the form factors ∞ 1 = Q M � F M 6 [ I M + ( m Z ) + ¯ I M C (+) 2 n ( m Z , µ ) a M + ( m Z )] = Q M 2 n ( µ ) n =0 ∞ 2 = Q ′ � − ( m Z ) + ¯ − ( m Z )] = −Q ′ C ( − ) F M 6 [ I M M I M 2 n +1 ( m Z , µ ) a M 2 n +1 ( µ ) M n =0 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  35. The Z → M + γ decay amplitude At the end of the day, we find: � � k µ q ν ε α Z ε ∗ β � γ − q · ε Z k · ε ∗ � egf M γ γ F M F M i A = ± i ǫ µναβ 1 − ε Z · ε ∗ 2 2 cos θ W k · q k · q with the form factors ∞ 1 = Q M � F M 6 [ I M + ( m Z ) + ¯ I M C (+) 2 n ( m Z , µ ) a M + ( m Z )] = Q M 2 n ( µ ) n =0 ∞ 2 = Q ′ � − ( m Z ) + ¯ − ( m Z )] = −Q ′ C ( − ) F M 6 [ I M M I M 2 n +1 ( m Z , µ ) a M 2 n +1 ( µ ) M n =0 quark couplings to photon and Z boson Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  36. The Z → M + γ decay amplitude At the end of the day, we find: � � k µ q ν ε α Z ε ∗ β � γ − q · ε Z k · ε ∗ � egf M γ γ F M F M i A = ± i ǫ µναβ 1 − ε Z · ε ∗ 2 2 cos θ W k · q k · q with the form factors ∞ 1 = Q M � F M 6 [ I M + ( m Z ) + ¯ I M C (+) 2 n ( m Z , µ ) a M + ( m Z )] = Q M 2 n ( µ ) n =0 ∞ 2 = Q ′ � − ( m Z ) + ¯ − ( m Z )] = −Q ′ C ( − ) F M 6 [ I M M I M 2 n +1 ( m Z , µ ) a M 2 n +1 ( µ ) M n =0 Convolution of LCDA with the hard function: 1 � I M ± ( m V ) = dx H ± ( x , m V , µ ) φ M ( x , µ ) 0 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  37. The Z → M + γ decay amplitude At the end of the day, we find: � � k µ q ν ε α Z ε ∗ β � γ − q · ε Z k · ε ∗ � egf M γ γ F M F M i A = ± i ǫ µναβ 1 − ε Z · ε ∗ 2 2 cos θ W k · q k · q with the form factors ∞ 1 = Q M � F M 6 [ I M + ( m Z ) + ¯ I M C (+) 2 n ( m Z , µ ) a M + ( m Z )] = Q M 2 n ( µ ) n =0 ∞ 2 = Q ′ � − ( m Z ) + ¯ − ( m Z )] = −Q ′ C ( − ) F M 6 [ I M M I M 2 n +1 ( m Z , µ ) a M 2 n +1 ( µ ) M n =0 Sums over even and odd Gegenbauer moments and a coefficient function C ( ± ) ( m V , µ ) n Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  38. The Z → M + γ decay amplitude Coefficient functions: ( m V , µ ) = 1 + C F α s ( µ ) � m V � C ( ± ) c ( ± ) + O ( α 2 s ) n n 4 π µ with: � � log m 2 � � m V 2 � � c ( ± ) V = ( n + 1)( n + 2) − 4 H n +1 + 3 µ 2 − i π n µ n +1 − 4 ( H n +1 − 1) ± 1 2 + 4 H 2 ( n + 1)( n + 2) + ( n + 1) 2 ( n + 2) 2 − 9 Large logs are resummed to all orders by choosing µ ∼ m Z ! Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  39. The Z → M + γ decay amplitude The combination C ( ± ) ( m V , µ ) a M n ( µ ) is formally scale independent! n n = 1 n = 2 NLO NLO LO LO The form factors become: Re F M 0 . 94 + 1 . 05 a M 2 ( m Z ) + 1 . 15 a M 4 ( m Z ) + 1 . 22 a M � � = Q M 6 ( m Z ) + . . . 1 � 0 . 94 + 0 . 41 a M 2 ( µ 0 ) + 0 . 29 a M 4 ( µ 0 ) + 0 . 23 a M � = Q M 6 ( µ 0 ) + . . . F M = 0 2 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  40. The Z → M + γ decay amplitude The combination C ( ± ) ( m V , µ ) a M n ( µ ) is formally scale independent! n n = 1 n = 2 NLO NLO LO LO The form factors become: moments at the high scale Re F M 0 . 94 + 1 . 05 a M 2 ( m Z ) + 1 . 15 a M 4 ( m Z ) + 1 . 22 a M � � = Q M 6 ( m Z ) + . . . 1 � 0 . 94 + 0 . 41 a M 2 ( µ 0 ) + 0 . 29 a M 4 ( µ 0 ) + 0 . 23 a M � = Q M 6 ( µ 0 ) + . . . F M = 0 2 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  41. The Z → M + γ decay amplitude The combination C ( ± ) ( m V , µ ) a M n ( µ ) is formally scale independent! n n = 1 n = 2 NLO NLO LO LO The form factors become: Re F M 0 . 94 + 1 . 05 a M 2 ( m Z ) + 1 . 15 a M 4 ( m Z ) + 1 . 22 a M � � = Q M 6 ( m Z ) + . . . 1 � 0 . 94 + 0 . 41 a M 2 ( µ 0 ) + 0 . 29 a M 4 ( µ 0 ) + 0 . 23 a M � = Q M 6 ( µ 0 ) + . . . F M = 0 → sensitivity strongly reduced! 2 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  42. Results for Z → M γ For the branching ratios BR( Z → M γ ) we find: Z → . . . Branching ratio asym. LO π 0 γ (9 . 80 + 0 . 09 − 0 . 14 µ ± 0 . 03 f ± 0 . 61 a 2 ± 0 . 82 a 4 ) · 10 − 12 7.71 14.67 ρ 0 γ (4 . 19 + 0 . 04 − 0 . 06 µ ± 0 . 16 f ± 0 . 24 a 2 ± 0 . 37 a 4 ) · 10 − 9 3.63 5.68 (2 . 89 + 0 . 03 − 0 . 05 µ ± 0 . 15 f ± 0 . 29 a 2 ± 0 . 25 a 4 ) · 10 − 8 ωγ 2.54 3.84 (8 . 63 + 0 . 08 − 0 . 13 µ ± 0 . 41 f ± 0 . 55 a 2 ± 0 . 74 a 4 ) · 10 − 9 φγ 7.12 12.31 (8 . 02 + 0 . 14 + 0 . 39 · 10 − 8 J /ψ γ − 0 . 15 µ ± 0 . 20 f − 0 . 36 σ ) 10.48 6.55 Υ(1 S ) γ (5 . 39 + 0 . 10 + 0 . 11 · 10 − 8 − 0 . 10 µ ± 0 . 08 f − 0 . 08 σ ) 7.55 4.11 Υ(4 S ) γ (1 . 22 + 0 . 02 + 0 . 02 · 10 − 8 − 0 . 02 µ ± 0 . 13 f − 0 . 02 σ ) 1.71 0.93 Υ( nS ) γ (9 . 96 + 0 . 18 + 0 . 20 · 10 − 8 − 0 . 19 µ ± 0 . 09 f − 0 . 15 σ ) 13.96 7.59 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  43. Results for Z → M γ For the branching ratios BR( Z → M γ ) we find: Z → . . . Branching ratio asym. LO π 0 γ (9 . 80 + 0 . 09 − 0 . 14 µ ± 0 . 03 f ± 0 . 61 a 2 ± 0 . 82 a 4 ) · 10 − 12 7.71 14.67 ρ 0 γ (4 . 19 + 0 . 04 − 0 . 06 µ ± 0 . 16 f ± 0 . 24 a 2 ± 0 . 37 a 4 ) · 10 − 9 3.63 5.68 (2 . 89 + 0 . 03 − 0 . 05 µ ± 0 . 15 f ± 0 . 29 a 2 ± 0 . 25 a 4 ) · 10 − 8 ωγ 2.54 3.84 (8 . 63 + 0 . 08 − 0 . 13 µ ± 0 . 41 f ± 0 . 55 a 2 ± 0 . 74 a 4 ) · 10 − 9 φγ 7.12 12.31 (8 . 02 + 0 . 14 + 0 . 39 · 10 − 8 J /ψ γ − 0 . 15 µ ± 0 . 20 f − 0 . 36 σ ) 10.48 6.55 Υ(1 S ) γ (5 . 39 + 0 . 10 + 0 . 11 · 10 − 8 − 0 . 10 µ ± 0 . 08 f − 0 . 08 σ ) 7.55 4.11 Υ(4 S ) γ (1 . 22 + 0 . 02 + 0 . 02 · 10 − 8 − 0 . 02 µ ± 0 . 13 f − 0 . 02 σ ) 1.71 0.93 Υ( nS ) γ (9 . 96 + 0 . 18 + 0 . 20 · 10 − 8 − 0 . 19 µ ± 0 . 09 f − 0 . 15 σ ) 13.96 7.59 scale dependence Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  44. Results for Z → M γ For the branching ratios BR( Z → M γ ) we find: Z → . . . Branching ratio asym. LO π 0 γ (9 . 80 + 0 . 09 − 0 . 14 µ ± 0 . 03 f ± 0 . 61 a 2 ± 0 . 82 a 4 ) · 10 − 12 7.71 14.67 ρ 0 γ (4 . 19 + 0 . 04 − 0 . 06 µ ± 0 . 16 f ± 0 . 24 a 2 ± 0 . 37 a 4 ) · 10 − 9 3.63 5.68 (2 . 89 + 0 . 03 − 0 . 05 µ ± 0 . 15 f ± 0 . 29 a 2 ± 0 . 25 a 4 ) · 10 − 8 ωγ 2.54 3.84 (8 . 63 + 0 . 08 − 0 . 13 µ ± 0 . 41 f ± 0 . 55 a 2 ± 0 . 74 a 4 ) · 10 − 9 φγ 7.12 12.31 (8 . 02 + 0 . 14 + 0 . 39 · 10 − 8 J /ψ γ − 0 . 15 µ ± 0 . 20 f − 0 . 36 σ ) 10.48 6.55 Υ(1 S ) γ (5 . 39 + 0 . 10 + 0 . 11 · 10 − 8 − 0 . 10 µ ± 0 . 08 f − 0 . 08 σ ) 7.55 4.11 Υ(4 S ) γ (1 . 22 + 0 . 02 + 0 . 02 · 10 − 8 − 0 . 02 µ ± 0 . 13 f − 0 . 02 σ ) 1.71 0.93 Υ( nS ) γ (9 . 96 + 0 . 18 + 0 . 20 · 10 − 8 − 0 . 19 µ ± 0 . 09 f − 0 . 15 σ ) 13.96 7.59 scale dependence decay constant Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  45. Results for Z → M γ For the branching ratios BR( Z → M γ ) we find: Z → . . . Branching ratio asym. LO π 0 γ (9 . 80 + 0 . 09 − 0 . 14 µ ± 0 . 03 f ± 0 . 61 a 2 ± 0 . 82 a 4 ) · 10 − 12 7.71 14.67 ρ 0 γ (4 . 19 + 0 . 04 − 0 . 06 µ ± 0 . 16 f ± 0 . 24 a 2 ± 0 . 37 a 4 ) · 10 − 9 3.63 5.68 (2 . 89 + 0 . 03 − 0 . 05 µ ± 0 . 15 f ± 0 . 29 a 2 ± 0 . 25 a 4 ) · 10 − 8 ωγ 2.54 3.84 (8 . 63 + 0 . 08 − 0 . 13 µ ± 0 . 41 f ± 0 . 55 a 2 ± 0 . 74 a 4 ) · 10 − 9 φγ 7.12 12.31 (8 . 02 + 0 . 14 + 0 . 39 · 10 − 8 J /ψ γ − 0 . 15 µ ± 0 . 20 f − 0 . 36 σ ) 10.48 6.55 Υ(1 S ) γ (5 . 39 + 0 . 10 + 0 . 11 · 10 − 8 − 0 . 10 µ ± 0 . 08 f − 0 . 08 σ ) 7.55 4.11 Υ(4 S ) γ (1 . 22 + 0 . 02 + 0 . 02 · 10 − 8 − 0 . 02 µ ± 0 . 13 f − 0 . 02 σ ) 1.71 0.93 Υ( nS ) γ (9 . 96 + 0 . 18 + 0 . 20 · 10 − 8 − 0 . 19 µ ± 0 . 09 f − 0 . 15 σ ) 13.96 7.59 scale dependence LCDA shape decay constant Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  46. Results for Z → M γ For the branching ratios BR( Z → M γ ) we find: Z → . . . Branching ratio asym. LO π 0 γ (9 . 80 + 0 . 09 − 0 . 14 µ ± 0 . 03 f ± 0 . 61 a 2 ± 0 . 82 a 4 ) · 10 − 12 7.71 14.67 ρ 0 γ (4 . 19 + 0 . 04 − 0 . 06 µ ± 0 . 16 f ± 0 . 24 a 2 ± 0 . 37 a 4 ) · 10 − 9 3.63 5.68 (2 . 89 + 0 . 03 − 0 . 05 µ ± 0 . 15 f ± 0 . 29 a 2 ± 0 . 25 a 4 ) · 10 − 8 ωγ 2.54 3.84 (8 . 63 + 0 . 08 − 0 . 13 µ ± 0 . 41 f ± 0 . 55 a 2 ± 0 . 74 a 4 ) · 10 − 9 φγ 7.12 12.31 (8 . 02 + 0 . 14 + 0 . 39 · 10 − 8 J /ψ γ − 0 . 15 µ ± 0 . 20 f − 0 . 36 σ ) 10.48 6.55 Υ(1 S ) γ (5 . 39 + 0 . 10 + 0 . 11 · 10 − 8 − 0 . 10 µ ± 0 . 08 f − 0 . 08 σ ) 7.55 4.11 Υ(4 S ) γ (1 . 22 + 0 . 02 + 0 . 02 · 10 − 8 − 0 . 02 µ ± 0 . 13 f − 0 . 02 σ ) 1.71 0.93 Υ( nS ) γ (9 . 96 + 0 . 18 + 0 . 20 · 10 − 8 − 0 . 19 µ ± 0 . 09 f − 0 . 15 σ ) 13.96 7.59 obtained when using only asymptotic form of LCDA φ M ( x ) = 6x ( 1 − x ) Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  47. Results for Z → M γ For the branching ratios BR( Z → M γ ) we find: Z → . . . Branching ratio asym. LO π 0 γ (9 . 80 + 0 . 09 − 0 . 14 µ ± 0 . 03 f ± 0 . 61 a 2 ± 0 . 82 a 4 ) · 10 − 12 7.71 14.67 ρ 0 γ (4 . 19 + 0 . 04 − 0 . 06 µ ± 0 . 16 f ± 0 . 24 a 2 ± 0 . 37 a 4 ) · 10 − 9 3.63 5.68 (2 . 89 + 0 . 03 − 0 . 05 µ ± 0 . 15 f ± 0 . 29 a 2 ± 0 . 25 a 4 ) · 10 − 8 ωγ 2.54 3.84 (8 . 63 + 0 . 08 − 0 . 13 µ ± 0 . 41 f ± 0 . 55 a 2 ± 0 . 74 a 4 ) · 10 − 9 φγ 7.12 12.31 (8 . 02 + 0 . 14 + 0 . 39 · 10 − 8 J /ψ γ − 0 . 15 µ ± 0 . 20 f − 0 . 36 σ ) 10.48 6.55 Υ(1 S ) γ (5 . 39 + 0 . 10 + 0 . 11 · 10 − 8 − 0 . 10 µ ± 0 . 08 f − 0 . 08 σ ) 7.55 4.11 Υ(4 S ) γ (1 . 22 + 0 . 02 + 0 . 02 · 10 − 8 − 0 . 02 µ ± 0 . 13 f − 0 . 02 σ ) 1.71 0.93 Υ( nS ) γ (9 . 96 + 0 . 18 + 0 . 20 · 10 − 8 − 0 . 19 µ ± 0 . 09 f − 0 . 15 σ ) 13.96 7.59 obtained when using only LO hard functions Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  48. The W → M + γ decay amplitude Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  49. W → M + γ The decay W → M + γ is similar to the Z → M + γ decay, except for an additional local contribution: γ W + W + W + γ γ The form factor decomposition now looks as follows: k µ q ν ε α W ε ∗ β � � i A ( W + → M + γ ) = ± egf M γ F M 1 − ε ⊥ W · ε ⊥∗ γ F M √ i ǫ µναβ 2 V ij 2 k · q 4 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  50. W → M + γ The decay W → M + γ is similar to the Z → M + γ decay, except for an additional local contribution: γ W + W + W + γ γ The form factor decomposition now looks as follows: k µ q ν ε α W ε ∗ β � � i A ( W + → M + γ ) = ± egf M γ F M 1 − ε ⊥ W · ε ⊥∗ γ F M √ i ǫ µναβ 2 V ij 2 k · q 4 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  51. W → M + γ The decay W → M + γ is similar to the Z → M + γ decay, except for an additional local contribution: γ W + W + W + γ γ The form factor decomposition now looks as follows: k µ q ν ε α W ε ∗ β � � i A ( W + → M + γ ) = ± egf M γ F M 1 − ε ⊥ W · ε ⊥∗ γ F M √ i ǫ µναβ 2 V ij 2 k · q 4 + for pseudoscalar, - for vector Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  52. Results for W → M + γ For the branching ratios W ± → M ∓ γ , we find: mode Branching ratio asym. LO π ± γ (4 . 00 + 0 . 06 − 0 . 11 µ ± 0 . 01 f ± 0 . 49 a 2 ± 0 . 66 a 4 ) · 10 − 9 2.45 8.09 ρ ± γ (8 . 74 + 0 . 17 − 0 . 26 µ ± 0 . 33 f ± 1 . 02 a 2 ± 1 . 57 a 4 ) · 10 − 9 6.48 15.12 K ± γ (3 . 25 + 0 . 05 − 0 . 09 µ ± 0 . 03 f ± 0 . 24 a 1 ± 0 . 38 a 2 ± 0 . 51 a 4 ) · 10 − 10 1.88 6.38 K ∗± γ (4 . 78 + 0 . 09 − 0 . 14 µ ± 0 . 28 f ± 0 . 39 a 1 ± 0 . 66 a 2 ± 0 . 80 a 4 ) · 10 − 10 3.18 8.47 (3 . 66 + 0 . 02 + 1 . 47 − 0 . 82 σ ) · 10 − 8 D s γ − 0 . 07 µ ± 0 . 12 CKM ± 0 . 13 f 0.98 8.59 D ± γ (1 . 38 + 0 . 01 − 0 . 30 σ ) · 10 − 9 + 0 . 50 − 0 . 02 µ ± 0 . 10 CKM ± 0 . 07 f 0.32 3.42 B ± γ (1 . 55 + 0 . 00 + 0 . 68 − 0 . 45 σ ) · 10 − 12 − 0 . 03 µ ± 0 . 37 CKM ± 0 . 15 f 0.09 6.44 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  53. Results for W → M + γ For the branching ratios W ± → M ∓ γ , we find: mode Branching ratio asym. LO π ± γ (4 . 00 + 0 . 06 − 0 . 11 µ ± 0 . 01 f ± 0 . 49 a 2 ± 0 . 66 a 4 ) · 10 − 9 2.45 8.09 ρ ± γ (8 . 74 + 0 . 17 − 0 . 26 µ ± 0 . 33 f ± 1 . 02 a 2 ± 1 . 57 a 4 ) · 10 − 9 6.48 15.12 K ± γ (3 . 25 + 0 . 05 − 0 . 09 µ ± 0 . 03 f ± 0 . 24 a 1 ± 0 . 38 a 2 ± 0 . 51 a 4 ) · 10 − 10 1.88 6.38 K ∗± γ (4 . 78 + 0 . 09 − 0 . 14 µ ± 0 . 28 f ± 0 . 39 a 1 ± 0 . 66 a 2 ± 0 . 80 a 4 ) · 10 − 10 3.18 8.47 (3 . 66 + 0 . 02 + 1 . 47 − 0 . 82 σ ) · 10 − 8 D s γ − 0 . 07 µ ± 0 . 12 CKM ± 0 . 13 f 0.98 8.59 D ± γ (1 . 38 + 0 . 01 + 0 . 50 − 0 . 30 σ ) · 10 − 9 − 0 . 02 µ ± 0 . 10 CKM ± 0 . 07 f 0.32 3.42 B ± γ (1 . 55 + 0 . 00 + 0 . 68 − 0 . 45 σ ) · 10 − 12 − 0 . 03 µ ± 0 . 37 CKM ± 0 . 15 f 0.09 6.44 flavour off-diagonal mesons allowed Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  54. Results for W → M + γ For the branching ratios W ± → M ∓ γ , we find: mode Branching ratio asym. LO π ± γ (4 . 00 + 0 . 06 − 0 . 11 µ ± 0 . 01 f ± 0 . 49 a 2 ± 0 . 66 a 4 ) · 10 − 9 2.45 8.09 ρ ± γ (8 . 74 + 0 . 17 − 0 . 26 µ ± 0 . 33 f ± 1 . 02 a 2 ± 1 . 57 a 4 ) · 10 − 9 6.48 15.12 K ± γ (3 . 25 + 0 . 05 − 0 . 09 µ ± 0 . 03 f ± 0 . 24 a 1 ± 0 . 38 a 2 ± 0 . 51 a 4 ) · 10 − 10 1.88 6.38 K ∗± γ (4 . 78 + 0 . 09 − 0 . 14 µ ± 0 . 28 f ± 0 . 39 a 1 ± 0 . 66 a 2 ± 0 . 80 a 4 ) · 10 − 10 3.18 8.47 (3 . 66 + 0 . 02 + 1 . 47 − 0 . 82 σ ) · 10 − 8 D s γ − 0 . 07 µ ± 0 . 12 CKM ± 0 . 13 f 0.98 8.59 D ± γ (1 . 38 + 0 . 01 + 0 . 50 − 0 . 30 σ ) · 10 − 9 − 0 . 02 µ ± 0 . 10 CKM ± 0 . 07 f 0.32 3.42 B ± γ (1 . 55 + 0 . 00 + 0 . 68 − 0 . 45 σ ) · 10 − 12 − 0 . 03 µ ± 0 . 37 CKM ± 0 . 15 f 0.09 6.44 introduces uncertainties from CKM elements Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  55. Decays of electroweak gauge bosons Z decays as BSM probes Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  56. Z → M + γ decays as BSM probes Our analysis can straight-forwardly be generalized to the case of non-SM Z boson couplings to quarks! Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  57. Z → M + γ decays as BSM probes Our analysis can straight-forwardly be generalized to the case of non-SM Z boson couplings to quarks! γ Z 0 Z 0 γ Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  58. Z → M + γ decays as BSM probes Our analysis can straight-forwardly be generalized to the case of non-SM Z boson couplings to quarks! γ Z 0 Z 0 γ At LEP, | a b | and | a c | have been measured to 1% , using our predictions, | a s | , | a d | and | a u | could be measured to ∼ 6% Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  59. Z → M + γ decays as BSM probes Our analysis can straight-forwardly be generalized to the case of non-SM Z boson couplings to quarks! γ Z 0 Z 0 FCNC FCNC γ At LEP, | a b | and | a c | have been measured to 1% , using our predictions, | a s | , | a d | and | a u | could be measured to ∼ 6% Introducing FCNC couplings allows the production of flavor off-diagonal mesons Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  60. Z → M + γ decays as FCNC probes γ Z 0 Z 0 γ Model independent predictions for flavor off-diagonal mesons: Decay mode Branching ratio SM background Z 0 → K 0 γ (7 . 70 ± 0 . 83) | v sd | 2 + (0 . 01 ± 0 . 01) | a sd | 2 � � · 10 − 8 λ α π ∼ 2 · 10 − 3 sin 2 θ W Z 0 → D 0 γ − 0 . 43 ) | v cu | 2 + (0 . 62 + 0 . 36 � (5 . 30 + 0 . 67 − 0 . 23 ) | a cu | 2 � · 10 − 7 λ π ∼ 2 · 10 − 3 α sin 2 θ W Z 0 → B 0 γ − 0 . 41 ) | v bd | 2 + (0 . 77 + 0 . 38 λ 3 � (2 . 08 + 0 . 59 − 0 . 26 ) | a bd | 2 � · 10 − 7 α π ∼ 8 · 10 − 5 sin 2 θ W Z 0 → B s γ − 0 . 52 ) | v bs | 2 + (0 . 87 + 0 . 51 λ 2 � (2 . 64 + 0 . 82 − 0 . 33 ) | a bs | 2 � · 10 − 7 α π ∼ 4 · 10 − 4 sin 2 θ W Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  61. Z → M + γ decays as FCNC probes γ W Z 0 W Z 0 γ Z 0 Z 0 W γ γ Model independent predictions for flavor off-diagonal mesons: Decay mode Branching ratio SM background Z 0 → K 0 γ (7 . 70 ± 0 . 83) | v sd | 2 + (0 . 01 ± 0 . 01) | a sd | 2 � � · 10 − 8 λ α π ∼ 2 · 10 − 3 sin 2 θ W Z 0 → D 0 γ − 0 . 43 ) | v cu | 2 + (0 . 62 + 0 . 36 � (5 . 30 + 0 . 67 − 0 . 23 ) | a cu | 2 � · 10 − 7 λ α π ∼ 2 · 10 − 3 sin 2 θ W Z 0 → B 0 γ − 0 . 41 ) | v bd | 2 + (0 . 77 + 0 . 38 λ 3 � (2 . 08 + 0 . 59 − 0 . 26 ) | a bd | 2 � · 10 − 7 α π ∼ 8 · 10 − 5 sin 2 θ W Z 0 → B s γ − 0 . 52 ) | v bs | 2 + (0 . 87 + 0 . 51 λ 2 � (2 . 64 + 0 . 82 − 0 . 33 ) | a bs | 2 � · 10 − 7 α π ∼ 4 · 10 − 4 sin 2 θ W Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  62. Z → M + γ decays as FCNC probes FCNCs would induce tree-level neutral-meson mixing, strongly constrained: � ( v sd ± a sd ) 2 �� � ( v sd ) 2 − ( a sd ) 2 �� � Re � � Re � < 2 . 9 · 10 − 8 < 3 . 0 · 10 − 10 � � � ( v sd ± a sd ) 2 �� � ( v sd ) 2 − ( a sd ) 2 �� � Im � < 1 . 0 · 10 − 10 � Im � < 4 . 3 · 10 − 13 � � � ( v cu ) 2 − ( a cu ) 2 � � � ( v cu ± a cu ) 2 � � < 2 . 2 · 10 − 8 < 1 . 5 · 10 − 8 � � � � ( v bd ± a bd ) 2 � � � ( v bd ) 2 − ( a bd ) 2 � < 4 . 3 · 10 − 8 < 8 . 2 · 10 − 9 � � � ( v bs ± a bs ) 2 � � � � ( v bs ) 2 − ( a bs ) 2 � < 5 . 5 · 10 − 7 < 1 . 4 · 10 − 7 � � [Bona et al. ( 2007 ), JHEP 0803, 049] [Bertone et al. ( 2012 ), JHEP 1303, 089] [Carrasco et al. ( 2013 ), JHEP 1403, 016] These bounds push our branching ratios down to 10 − 14 , rendering them unobservable. Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  63. Decays of electroweak gauge bosons Weak radiative Z decays to M + W Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  64. The Z → M + W decay The contributing diagrams in this case look similar to the W → M γ decays: W − Z 0 Z 0 Z 0 W − W − Form factor decomposition: g 2 f M � 1 − m 2 � i A ( Z → M + W − ) = ± W √ V ij m 2 4 2 c W Z Z ε ∗ β � k µ q ν ε α 2 + q · ε Z k · ε ∗ � F M 1 − ε Z · ε ∗ W F M F M W W × i ǫ µναβ 3 k · q k · q Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  65. The Z → M + W decay The contributing diagrams in this case look similar to the W → M γ decays: W − Z 0 Z 0 Z 0 W − W − Form factor decomposition: g 2 f M � 1 − m 2 � i A ( Z → M + W − ) = ± W √ V ij m 2 4 2 c W Z Z ε ∗ β � k µ q ν ε α 2 + q · ε Z k · ε ∗ � F M 1 − ε Z · ε ∗ W F M F M W W × i ǫ µναβ 3 k · q k · q now allowed because W can be longitudinally polarized Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  66. The Z → M + W decay The contributing diagrams in this case look similar to the W → M γ decays: W − Z 0 Z 0 Z 0 W − W − Form factor decomposition: g 2 f M � 1 − m 2 � i A ( Z → M + W − ) = ± W √ V ij m 2 4 2 c W Z Z ε ∗ β � k µ q ν ε α 2 + q · ε Z k · ε ∗ � F M 1 − ε Z · ε ∗ W F M F M W W × i ǫ µναβ 3 k · q k · q Allows the QCD factorization approach to be tested at lower scale ( m Z − m W ) ≈ 10 GeV ! Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  67. Results for Z → M + W For the decay rates, we find: Γ( Z → M + W − ) = πα 2 ( m Z ) f 2 | V ij | 2 s 2 � 3 2 + 3 W + 227 � 2 s 2 180 s 4 W + 0 . 003 a M M W 1 + . . . c 2 48 m Z W Our predictions for the branching ratios are: Decay mode Branching ratio Z 0 → π ± W ∓ (1 . 51 ± 0 . 005 f ) · 10 − 10 Z 0 → ρ ± W ∓ (4 . 00 ± 0 . 15 f ) · 10 − 10 Z 0 → K ± W ∓ (1 . 16 ± 0 . 01 f ) · 10 − 11 Z 0 → K ∗± W ∓ (1 . 96 ± 0 . 12 f ) · 10 − 11 Z 0 → D s W ∓ (6 . 04 ± 0 . 20 CKM ± 0 . 22 f ) · 10 − 10 Z 0 → D ± W ∓ (1 . 99 ± 0 . 14 CKM ± 0 . 10 f ) · 10 − 11 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  68. Results for Z → M + W For the decay rates, we find: Γ( Z → M + W − ) = πα 2 ( m Z ) f 2 | V ij | 2 s 2 � 3 2 + 3 W + 227 � 2 s 2 180 s 4 W + 0 . 003 a M M W 1 + . . . c 2 48 m Z W very small sensitivity to LCDA Our predictions for the branching ratios are: Decay mode Branching ratio Z 0 → π ± W ∓ (1 . 51 ± 0 . 005 f ) · 10 − 10 Z 0 → ρ ± W ∓ (4 . 00 ± 0 . 15 f ) · 10 − 10 Z 0 → K ± W ∓ (1 . 16 ± 0 . 01 f ) · 10 − 11 Z 0 → K ∗± W ∓ (1 . 96 ± 0 . 12 f ) · 10 − 11 Z 0 → D s W ∓ (6 . 04 ± 0 . 20 CKM ± 0 . 22 f ) · 10 − 10 Z 0 → D ± W ∓ (1 . 99 ± 0 . 14 CKM ± 0 . 10 f ) · 10 − 11 Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  69. Results for Z → M + W For the decay rates, we find: Γ( Z → M + W − ) = πα 2 ( m Z ) f 2 | V ij | 2 s 2 � 3 2 + 3 W + 227 � 2 s 2 180 s 4 W + 0 . 003 a M M W 1 + . . . c 2 48 m Z W very small sensitivity to LCDA Our predictions for the branching ratios are: Decay mode Branching ratio Z 0 → π ± W ∓ (1 . 51 ± 0 . 005 f ) · 10 − 10 Z 0 → ρ ± W ∓ (4 . 00 ± 0 . 15 f ) · 10 − 10 Z 0 → K ± W ∓ (1 . 16 ± 0 . 01 f ) · 10 − 11 Z 0 → K ∗± W ∓ (1 . 96 ± 0 . 12 f ) · 10 − 11 Z 0 → D s W ∓ (6 . 04 ± 0 . 20 CKM ± 0 . 22 f ) · 10 − 10 Z 0 → D ± W ∓ (1 . 99 ± 0 . 14 CKM ± 0 . 10 f ) · 10 − 11 The O ( α s ) corrections to this are an interesting project left for future work, in particular the scale dependence of the result. Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  70. Conclusions, summary and outlook Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  71. Conclusions, summary and outlook To summarize: Decay mode Branching ratio Decay mode Branching ratio Z 0 → π 0 γ W ± → π ± γ (9 . 80 ± 1 . 03) · 10 − 12 (4 . 00 ± 0 . 83) · 10 − 9 Z 0 → ρ 0 γ W ± → ρ ± γ (4 . 19 ± 0 . 47) · 10 − 9 (8 . 74 ± 1 . 91) · 10 − 9 Z 0 → ωγ W ± → K ± γ (2 . 89 ± 0 . 41) · 10 − 8 (3 . 25 ± 0 . 69) · 10 − 10 Z 0 → φγ W ± → K ∗± γ (8 . 63 ± 1 . 01) · 10 − 9 (4 . 78 ± 1 . 15) · 10 − 10 Z 0 → J /ψ γ W ± → D s γ (8 . 02 ± 0 . 45) · 10 − 8 (3 . 66 + 1 . 49 − 0 . 85 ) · 10 − 8 Z 0 → Υ(1 S ) γ W ± → D ± γ (5 . 39 ± 0 . 16) · 10 − 8 (1 . 38 + 0 . 51 − 0 . 33 ) · 10 − 9 Z 0 → Υ(4 S ) γ W ± → B ± γ (1 . 22 ± 0 . 13) · 10 − 8 (1 . 55 + 0 . 79 − 0 . 60 ) · 10 − 12 For Z → V γ → µ + µ − γ , one can trigger on muons and the photon Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  72. Conclusions, summary and outlook To summarize: Decay mode Branching ratio Decay mode Branching ratio Z 0 → π 0 γ W ± → π ± γ (9 . 80 ± 1 . 03) · 10 − 12 (4 . 00 ± 0 . 83) · 10 − 9 Z 0 → ρ 0 γ W ± → ρ ± γ (4 . 19 ± 0 . 47) · 10 − 9 (8 . 74 ± 1 . 91) · 10 − 9 Z 0 → ωγ W ± → K ± γ (2 . 89 ± 0 . 41) · 10 − 8 (3 . 25 ± 0 . 69) · 10 − 10 Z 0 → φγ W ± → K ∗± γ (8 . 63 ± 1 . 01) · 10 − 9 (4 . 78 ± 1 . 15) · 10 − 10 Z 0 → J /ψ γ W ± → D s γ (8 . 02 ± 0 . 45) · 10 − 8 (3 . 66 + 1 . 49 − 0 . 85 ) · 10 − 8 Z 0 → Υ(1 S ) γ W ± → D ± γ (5 . 39 ± 0 . 16) · 10 − 8 (1 . 38 + 0 . 51 − 0 . 33 ) · 10 − 9 Z 0 → Υ(4 S ) γ W ± → B ± γ (1 . 22 ± 0 . 13) · 10 − 8 (1 . 55 + 0 . 79 − 0 . 60 ) · 10 − 12 For Z → V γ → µ + µ − γ , one can trigger on muons and the photon We expect O (100) J /ψ γ events at the LHC Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  73. Conclusions, summary and outlook To summarize: Decay mode Branching ratio Decay mode Branching ratio Z 0 → π 0 γ W ± → π ± γ (9 . 80 ± 1 . 03) · 10 − 12 (4 . 00 ± 0 . 83) · 10 − 9 Z 0 → ρ 0 γ W ± → ρ ± γ (4 . 19 ± 0 . 47) · 10 − 9 (8 . 74 ± 1 . 91) · 10 − 9 Z 0 → ωγ W ± → K ± γ (2 . 89 ± 0 . 41) · 10 − 8 (3 . 25 ± 0 . 69) · 10 − 10 Z 0 → φγ W ± → K ∗± γ (8 . 63 ± 1 . 01) · 10 − 9 (4 . 78 ± 1 . 15) · 10 − 10 Z 0 → J /ψ γ W ± → D s γ (8 . 02 ± 0 . 45) · 10 − 8 (3 . 66 + 1 . 49 − 0 . 85 ) · 10 − 8 Z 0 → Υ(1 S ) γ W ± → D ± γ (5 . 39 ± 0 . 16) · 10 − 8 (1 . 38 + 0 . 51 − 0 . 33 ) · 10 − 9 Z 0 → Υ(4 S ) γ W ± → B ± γ (1 . 22 ± 0 . 13) · 10 − 8 (1 . 55 + 0 . 79 − 0 . 60 ) · 10 − 12 For Z → V γ → µ + µ − γ , one can trigger on muons and the photon We expect O (100) J /ψ γ events at the LHC Ideas for reconstructing ( ρ , ω and φ ) + γ exist [Kagan et al. ( 2014 ), arXiv:1406.1722] Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  74. Conclusions, summary and outlook To summarize: Decay mode Branching ratio Decay mode Branching ratio Z 0 → π 0 γ W ± → π ± γ (9 . 80 ± 1 . 03) · 10 − 12 (4 . 00 ± 0 . 83) · 10 − 9 Z 0 → ρ 0 γ W ± → ρ ± γ (4 . 19 ± 0 . 47) · 10 − 9 (8 . 74 ± 1 . 91) · 10 − 9 Z 0 → ωγ W ± → K ± γ (2 . 89 ± 0 . 41) · 10 − 8 (3 . 25 ± 0 . 69) · 10 − 10 Z 0 → φγ W ± → K ∗± γ (8 . 63 ± 1 . 01) · 10 − 9 (4 . 78 ± 1 . 15) · 10 − 10 Z 0 → J /ψ γ W ± → D s γ (8 . 02 ± 0 . 45) · 10 − 8 (3 . 66 + 1 . 49 − 0 . 85 ) · 10 − 8 Z 0 → Υ(1 S ) γ W ± → D ± γ (5 . 39 ± 0 . 16) · 10 − 8 (1 . 38 + 0 . 51 − 0 . 33 ) · 10 − 9 Z 0 → Υ(4 S ) γ W ± → B ± γ (1 . 22 ± 0 . 13) · 10 − 8 (1 . 55 + 0 . 79 − 0 . 60 ) · 10 − 12 For Z → V γ → µ + µ − γ , one can trigger on muons and the photon We expect O (100) J /ψ γ events at the LHC Ideas for reconstructing ( ρ , ω and φ ) + γ exist [Kagan et al. ( 2014 ), arXiv:1406.1722] Reconstructing W decays at the LHC is more challenging [Mangano, Melia ( 2014 ), arXiv:1410.7475] Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  75. Conclusions and outlook A few things that I did not talk about today, but are featured in the paper: In some older papers, the authors speculated about a “possible huge enhancement” of the decays W , Z → P γ coming from an unsuppressed contribution from the axial anomaly. [Jacob, Wu ( 1989 ), Phys. Lett. B 232, 529] [Keum,Pham ( 1994 ), Mod. Phys. Lett. A 9, 1545] We find that such claims are false. Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  76. Conclusions and outlook A few things that I did not talk about today, but are featured in the paper: In some older papers, the authors speculated about a “possible huge enhancement” of the decays W , Z → P γ coming from an unsuppressed contribution from the axial anomaly. [Jacob, Wu ( 1989 ), Phys. Lett. B 232, 529] [Keum,Pham ( 1994 ), Mod. Phys. Lett. A 9, 1545] We find that such claims are false. We have derived decay constants for several mesons from updated experimental data, decreasing the uncertainty of our predictions. Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

  77. Conclusions and outlook We have derived predictions for the decay rates of exclusive radiative decays V → M + γ in the framework of QCD factorization. The branching ratios are small, between O (10 − 12 ) to O (10 − 9 ) . Very rare, exclusive radiative decays of W and Z bosons in QCD factorization

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend