vertical dynamic aperture with radiation from quadrupoles
play

Vertical dynamic aperture with radiation from quadrupoles - PowerPoint PPT Presentation

Vertical dynamic aperture with radiation from quadrupoles FCCee_z_202_nosol_13.seq at 45.6 GeV A. Bogomyagkov, E. Levichev, S. Glukhov, S. Sinyatkin Budker Institute of Nuclear Physics Novosibirsk July, 2017 A. Bogomyagkov (BINP) FCC-ee DA


  1. Vertical dynamic aperture with radiation from quadrupoles FCCee_z_202_nosol_13.seq at 45.6 GeV A. Bogomyagkov, E. Levichev, S. Glukhov, S. Sinyatkin Budker Institute of Nuclear Physics Novosibirsk July, 2017 A. Bogomyagkov (BINP) FCC-ee DA 1 / 15

  2. 6d (SR from BEND, QUAD) and 4d tracking: XY 6d(SR) 4d σ σ σ σ σ σ =6.3e-006 m, =3.1e-008 m, =3.8e-004 =6.3e-006 m, =3.1e-008 m, =3.8e-004 x y e x y e 60 150 40 100 20 50 0 y y σ σ 0 Y/ Y/ − 20 − 50 − 40 − 100 − 60 − 150 − 80 − − − − − − − 150 100 50 0 50 100 150 40 30 20 10 0 10 20 30 40 σ σ X/ X/ x x R x = 109 σ x R y = 142 σ y R x = 35 σ x R y = 40 σ y A. Bogomyagkov (BINP) FCC-ee DA 2 / 15

  3. 6d (SR from BEND, QUAD) and 6d tracking: XY 6d(SR) 6d σ σ σ σ σ σ =6.3e-006 m, =3.1e-008 m, =3.8e-004 =6.3e-006 m, =3.1e-008 m, =3.8e-004 x y e x y e 60 150 40 100 20 50 0 y y σ σ 0 Y/ Y/ − 20 − 50 − 40 − 100 − 60 − 150 − 80 − − − − − − 100 50 0 50 100 40 30 20 10 0 10 20 30 40 σ σ X/ X/ x x R x = 109 σ x R y = 142 σ y R x = 35 σ x R y = 40 σ y A. Bogomyagkov (BINP) FCC-ee DA 3 / 15

  4. Introduction Problem Why vertical dynamic aperture drops from R y = 142 σ y to R y = 40 ÷ 50 σ y ? PTC ptc_create_layout, time=true, model=2, exact=true, method=6, nst=10; ptc_setswitch, fringe=true, debuglevel=1,radiation=true; Yin = y 0 + j ∗ dy ; Tin = 0 . 225 ∗ (( Yin / y 0 ) 2 ) ∗ σ t ; ptc_start, x=0, px=0, y=Yin, py=0,pt=0, T=Tin; ptc_track,icase=6,closed_orbit,dump,maxaper={1,1,1,1,1,1}, turns=5200,ffile=1,element_by_element; A. Bogomyagkov (BINP) FCC-ee DA 4 / 15

  5. 6d (SR from BEND, QUAD) PX:X PY:Y PT:T 5 150 0 0 100 − 1 − 5 50 − 2 px py 0 σ t σ σ − 10 PT/ PX/ PY/ − − 3 50 − 15 − 100 − 4 − 20 − 150 − 5 − 200 − 2 − 1 0 1 2 − 150 − 100 − 50 0 50 100 150 1 2 3 4 5 6 7 σ σ σ X/ Y/ T/ x y t σ σ σ =6.3e-006 m, =3.1e-008 m, =3.8e-004 PT:turn T:turn x y e 58 0 0.7 57 − 0.6 56 1 55 0.5 − 2 σ t y 54 σ t σ PT/ 0.4 T/ Y/ − 3 53 0.3 52 0.2 − 4 51 0.1 − 5 50 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 − 1 − 0.5 0 0.5 1 σ turn turn X/ x A. Bogomyagkov (BINP) FCC-ee DA 5 / 15

  6. 6d (SR from BEND, QUAD) damping σ σ σ Y:turn {part==1, Yin=50 } Y:turn {part==5, Yin=52 } Y:turn {part==11, Yin=55 } y y y 60 60 60 40 40 40 20 20 20 y y y σ σ σ Y/ Y/ Y/ 0 0 0 − − 20 20 − 20 − − 40 − 40 40 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 turn turn turn σ σ σ Y:turn {part==16, Yin=57.5 } Y:turn {part==17, Yin=58 } Y:turn {part==18, Yin=58.5 } y y y 60 300 400 200 40 300 100 200 20 0 y y 100 y σ σ σ Y/ Y/ Y/ 0 − 100 0 − − 20 200 − 100 − 300 − 40 − 200 − 400 0 1000 2000 3000 4000 5000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0 200 400 600 800 1000 1200 1400 1600 turn turn turn A. Bogomyagkov (BINP) FCC-ee DA 6 / 15

  7. History References John M. Jowett (SLAC), Introductory Statistical Mechanics for Electron Storage Rings, AIP Conf.Proc. 153 (1987) 864-970 J.M. Jowett (CERN), Nonlinear Dissipative Phenomena In Electron Storage Rings, Lect.Notes Phys. 247 (1986) 343-366 In *Santa Margherita Di Pula 1985, Proceedings, Nonlinear Dynamics Aspects Of Particle Accelerators*, 343-366 J. Jowett (CERN), Dynamic aperture for LEP: Physics and calculations, Conf.Proc. C9401174 (1994) 47-71, In *Chamonix 1994, LEP performance* 47-71 Comments Some tracking plots are similar. There was no mentioning of damping turning into raising. A. Bogomyagkov (BINP) FCC-ee DA 7 / 15

  8. Parameters (radiation ON, no tappering) Energy: E = 45 . 6 Gev. Tunes: ν s = 0 . 0413, ν y = 0 . 2217, ν s = 0 . 1366 Damping times [turns]: τ s = 1300, τ y = 2600, τ x = 2600 Energy loss: U 0 = 35 . 96 MeV/turn U q ( FF , 50 σ y ) = 4 × 0 . 5 MeV, U q ( FF , 50 σ x ) = 4 × 3 MeV envelope, U d ( B , arc ) = 12 . 4 keV, U q ( QF , 50 σ x ) = 2 . 8 keV, U q ( QF , 50 σ y ) = 2 . 5 eV, U q ( QD , 50 σ x ) = 1 keV, U q ( QD , 50 σ y ) = 10 eV A. Bogomyagkov (BINP) FCC-ee DA 8 / 15

  9. Equations of motion: longitudinal Exact 2 − p 2 σ ′ = − K 0 x − p 2 y x 2 E 4 � − eV 0 � φ s + 2 πσ δ ( s − s 0 ) − C γ � � p ′ p 0 c K 2 0 t = sin 0 ( 1 + 2 p t ) p 0 c λ 2 π E 4 − C γ 1 ( x 2 + y 2 ) p 0 c K 2 0 2 π Average, x β = 0 σ ′ = − α p t − J y � γ � 2 E 4 � − eV 0 � φ s + 2 πσ p 0 c Π( 1 + 2 p t ) − C γ U 0 � � p ′ p 0 c Π K 2 0 1 L q y 2 t = sin − q p 0 c Π λ 2 π A. Bogomyagkov (BINP) FCC-ee DA 9 / 15

  10. Synchronous phase No synchrotron oscillations � 2 n � σ ′ = 0 , p ′ t = 0 , J y ∝ exp τ y � 1 − J y � γ � � + U q ( σ y ) J y U 0 sin [ φ s ] = ( − eV 0 ) α ( − eV 0 ) ε y T:turn {part==1 || part==17} 0.7 0.7 0.6 0.6 0.5 2 π σ s 0.5 λ RF 0.4 y in = 50 σ y, τ y =- 2.6 10 3 0.4 0.3 t σ ϕ s T/ y in = 58 σ y, τ y = 5 10 3 0.3 0.2 0.1 0.2 0.0 0.1 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 Turn turn A. Bogomyagkov (BINP) FCC-ee DA 10 / 15

  11. Equations of motion: longitudinal Average, x β = 0 σ ′ = − α p t − J y � γ � 2 y 2 � � p 0 c Π( 1 + 2 p t ) − U q ( σ y ) − eV 0 φ s + 2 πσ U 0 � � q p ′ t = sin − p 0 c Π λ p 0 c Π σ 2 q , y β q , y cos( ψ q + k y s ) = Af q + A ∗ f ∗ � y q = 2 | A | q Solution p t = Be − α t s cos ( k s s ) − J y � γ � − U q ( σ y ) J y β ′ q , y k 2 s σ 2 2 α p 0 c Π q , y e i 2 k y s − F ∗ − F y y e − i 2 k y s 4 k 2 4 k 2 y y J y f q f ′ F y = − U q ( σ y ) k y = 2 π { ν y } q , σ 2 p 0 c Π Π y A. Bogomyagkov (BINP) FCC-ee DA 11 / 15

  12. Equations of motion: vertical Exact y ′ = p y ( 1 − p t ) E 4 E 4 C γ 0 − p y y 2 C γ p ′ p 0 c K 2 0 p 0 c K 2 0 y = K 1 y − p y 1 2 π 2 π Map of quadrupole radiation E 4 E 4 C γ C γ 1 L q = U q ( σ y ) ∆ p y = − p y , 0 y 2 p 0 c K 2 0 p 0 c K 2 0 ≈ 0 . 7 m − 2 1 L q , 0 E 0 σ 2 2 π 2 π y Map of quadrupole fringe K 1 ∆ p y = − p y , 0 y 2 K 1 / 4 ≈ 0 . 15 m − 2 4 , 0 A. Bogomyagkov (BINP) FCC-ee DA 12 / 15

  13. Vertical dynamic aperture limit Solving: parameter variation and averaging y ( s ) = A ( s ) f q ( s ) + A ( s ) ∗ f q ( s ) ∗ , p y ( s ) = A ( s ) f ′ q ( s ) + A ( s ) ∗ f ′ q ( s ) ∗ Solution � − 1 + ( β ′ y / 2 ) 2 � J 2 y = − 2 α y J y + U q ( σ y ) 4 p 0 c cos( 2 ψ q ) { ν y } y J ′ Π σ 2 q , y k 2 ν y β y y DA limit J ′ y = 0 4 σ 2 q , y k 2 K 2 U 0 y 0 J y = � ∝ � − 1 +( β ′ y / 2 ) 2 K 2 U q ( σ y ) cos( 2 ψ q ) { ν y } 1 L q ν y β y J y ≈ 50 σ y A. Bogomyagkov (BINP) FCC-ee DA 13 / 15

  14. Parametric resonance and Van der Pol oscillator E 4 E 4 C γ 0 − ( p y y 2 ) ′ C γ p ′′ y = K 1 p y ( 1 − p t ) − p ′ p 0 c K 2 0 p 0 c K 2 0 Exact: y 1 2 π 2 π y ′′ + k 2 1 − F 1 y 2 cos( 2 k y s ) y + 2 α y ′ = 0 � � Illustration: y 1500 6000 y [ 0 ]= 1.5 10 3 y [ 0 ]= 1.73 10 3 1000 4000 500 2000 0 0 y y - 500 - 2000 - 1000 - 4000 - 6000 - 1500 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 Turn Turn y ′′ + k 2 y y + 2 α y ′ � 1 − F 1 y 2 � Van der Pol oscillator: = 0 A. Bogomyagkov (BINP) FCC-ee DA 14 / 15

  15. Conclusion for vertical plane at 45.6 GeV Observed and studied a new effect limiting dynamic aperture. 1 Radiation from FF quadrupoles modulates p t at double betatron 2 frequency. Map of radiation from FF quadrupole is similar to quadrupole 3 fringe and of the same value. Parametric resonance in vertical motion changes damping. It is 4 observed in tracking and obtained by equations. Vertical dynamic aperture is limited by this effect. 5 Chromaticity of vertical beta function in the quadrupole will 6 change estimations, because particle amplitude will depend on its energy. Minimization of β and β ′ chromaticity in the quadrupole is beneficial. A. Bogomyagkov (BINP) FCC-ee DA 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend