verified error b oun d s f or multipl e roots o f syst e
play

Verified error b oun d s f or multipl e roots o f syst e ms o f - PowerPoint PPT Presentation

Verified error b oun d s f or multipl e roots o f syst e ms o f nonlin ea r e qu a tions St ef Gr a ill a t LIP6/P E QU A N , Sor b onn e Univ e rsit s , UPM C Univ P a ris 06 , C NRS Joint work with Si e g f ri ed M. Rump Journ e s m tho de


  1. Verified error b oun d s f or multipl e roots o f syst e ms o f nonlin ea r e qu a tions St ef Gr a ill a t LIP6/P E QU A N , Sor b onn e Univ e rsit é s , UPM C Univ P a ris 06 , C NRS Joint work with Si e g f ri ed M. Rump Journ ée s m é tho de s de su bd ivisions pour l e s syst è m e s singuli e rs IR CC yN , N a nt e s , Dece m be r 1 5 -16 , 2014 S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 1 / 42

  2. Gener a l motiv a tions : s e l f -v a li da ting m e tho d s V e ri f y a ssumptions o f m a th e m a ti ca l th e or e ms on th e c omput e r M a king m a th e m a ti ca l proo f s with c omput e rs G e tting v e ri fied r e sults : → a n int e rv a l e n c losur e o f th e tru e r e sult → a n a pproxim a t e r e sult with a rigorous e rror b oun d Possi b ly with proo f o f uniqu e n e ss Be ing fa st a n d acc ur a t e Dea ling with “ill-pos ed pro b l e ms” S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 2 / 42

  3. Gener a l motiv a tions ( c ont ’d ) P r oo fs wi t h c omp uters: how t o d o t h at ? wi t h c omp uter a lg ebra s y ste m s: e x act resu l ts but s om et im es no t effic i e n t wi t h flo at ing-n u m bers: fast but of e n w r ong resu l ts due t o r o u n d ing err o rs Po ss i b l e s ol ut ion : c omp ut ing wi t h flo at ing-poin t but ta king in t o acc o u n t a ll t h e r o u n d ing err o rs ! S . G ra ill at ( U niv. P ar i s 6 ) V er i f i ed err o r b o u n ds f o r m u l t ipl e r oo ts 3 / 4 2

  4. Outline of the t a lk Prin c ipl e o f s e l f -v a li da ting m e tho d s 1 Multipl e roots o f polynomi a l syst e ms 2 Num e ri ca l e xp e rim e nts 3 S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 4 / 42

  5. Outline of the t a lk Prin c ipl e o f s e l f -v a li da ting m e tho d s 1 Multipl e roots o f polynomi a l syst e ms 2 Num e ri ca l e xp e rim e nts 3 S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 5 / 42

  6. Proving th a t a m a trix is nonsingul a r T e or e m 1 Let A be a matr ix a n d R a no t h er m atr ix suc h t h at ∥ I − RA ∥ < 1 . Te n A i s non s ing u l ar Proo f . B y c ontr a positiv e, i f A is singul a r , th e r e e xists x ≠ 0 su c h th a t A x = 0. T e n ( I − RA ) x = x a n d so ∥ I − RA ∥ ≥ 1. On a c omput e r , c hoos e f or R ≈ A − 1 a n d th e n c omput e ∥ I − RA ∥ with int e rv a l a rithm e ti c . S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 6 / 42

  7. Proving th a t a m a trix is nonsingul a r with INTL AB L e t A be a m a trix o f d im e nsion n R = inv(A) C = eye(n) - R*intval(A) nonsingular = ( norm(C,1) < 1 ) I f nonsingul a r = 1 , th e n A is nonsingul a r. I f nonsingul a r = 0 , th e n w e ca n s a y nothing S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 7 / 42

  8. A simpl e a ppro ac h L e t f ∶ R n → R n a n d ̂ x ∈ R n unknown su c h th a t f (̂ x ) = 0 L e t ̃ x ≈ ̂ x su c h th a t f (̃ x ) ≈ 0 F in d a b oun d f or ̃ x : a n int e rv a l X su c h th a t ̂ x ∈ X W e h a v e f ( x ) = 0 ⇔ g ( x ) = x w ith g ( x ) ∶ = x − R f ( x ) w ith de t ( R ) ≠ 0 . T e or e m 2 ( B rou w e r , 1912) Every continuous function from a closed ba ll o f a E u c li dea n sp ace to its e l f h a s a fi x ed point. S. Gr a ill a t (Uni v . P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 8 / 42

  9. A simpl e a ppro ac h ( c ont ’ d ) B y B r o u w e r fi x ed poin t t h e o r e m , x ) = ̂ x ) = 0 X ∈ IR n , g ( X ) ⊆ X ⇒ ∃̂ x ∈ X , g (̂ ⇒ f (̂ x W e j ust h a v e t o c h ec k g ( X ) ⊆ X a n d p r o v e de t ( R ) ≠ 0 . B ut n a i v e a pp r o ac h fa il s : g ( X ) ⊆ X − R f ( X ) ⊈ X S . G r a ill a t ( U ni v . P a r i s 6 ) V e r i f i ed e rr o r b o u n d s f o r m u l t ipl e r oo ts 9 / 4 2

  10. B oun d s f or th e solution o f nonlin ea r syst e ms M ea n V a lu e T e or e m : i f f ∈ C 1 th e n f ( x ) = f (̃ x ) + M ( x − ̃ x ) with M = ( ∂ f ∂x ( ξ i )) i L e t Y ∶= X − ̃ x a n d g ( x ) − ̃ x − ̃ x ∈ X ⇒ = x − R f ( x ) x − R f (̃ x ) + ( I − RM )( x − ̃ = x ) ∈ − R f (̃ x ) + ( I − RM ) Y A s a c ons e qu e n ce − R f (̃ x ) + ( I − RM ) Y ⊆ Y ⇒ g ( X ) − ̃ x ⊆ Y ⇒ g ( X ) ⊆ X S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 10 / 42

  11. B oun d s f or th e solution o f nonlin ea r syst e ms ( c ont ’ d ) T e o r e m 3 ( Ru mp , 19 8 3 ) Let f ∶ R n → R n with f = ( f 1 , . . . , f n ) ∈ C 1 , ˜ x ∈ R n , X ∈ IR n with 0 ∈ X a n d R ∈ R n × n be giv e n. L e t M ∈ IR n × n be giv e n su c h th a t {∇ f i ( ζ ) ∶ ζ ∈ ̃ x + X } ⊆ M i , ∶ . De not e b y I th e n × n i de ntit y m a tri x a n d a ssum e − R f (̃ x ) + ( I − RM ) X ⊆ in t ( X ) . T e n th e r e is a uni qu e ̂ x ∈ ̃ x + X w i t h f (̂ x ) = 0 . Mo r e o v e r , e v e ry m a tr i x ̃ M ∈ M i s non s ing u l a r . In p a rt i c u l a r , t h e J ac o b i a n J f (̂ ∂ x (̂ x ) = ∂ f x ) i s non s ing u l a r . S . G r a ill a t ( U niv. P a r i s 6 ) V e r i f i ed e rr o r b o u n d s f o r m u l t ipl e r oo ts 11 / 4 2

  12. Rem a rk Not e th a t a n in c lusion o f th e r a ng e o f th e gr ad i e nts ∇ f i ov e r th e s e t ̃ x + X n eed s to be c omput ed . A c onv e ni e nt w a y to d o this in INTL AB is b y int e rv a l a rithm e ti c a n d th e gr ad i e nt tool b ox. F or a giv e n (M a tl ab ) f un c tion f , f or xs = ̃ x a n d a n int e rv a l v ec tor X , th e ca ll M = f ( gradientinit ( xs + X )) c omput e s a n in c lusion M . S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 12 / 42

  13. Outline of the t a lk Prin c ipl e o f s e l f -v a li da ting m e tho d s 1 Multipl e roots o f polynomi a l syst e ms 2 Num e ri ca l e xp e rim e nts 3 S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 13 / 42

  14. Verific a tion o f multipl e roots V e ri fica tion m e tho d f or c omputing gu a r a nt eed (r ea l or c ompl e x) e rror b oun d s f or d ou b l e roots o f syst e ms o f nonlin ea r e qu a tions. To c ir c umv e nt th e prin c ipl e pro b l e m o f ill-pos ed n e ss w e prov e th a t a slightly p e rtur bed syst e m o f nonlin ea r e qu a tions h a s a d ou b l e root. F or e x a mpl e, f or a giv e n univ a ri a t e f un c tion f ∶ R → R w e c omput e two int e rv a ls X , E ⊆ R with th e prop e rty th a t th e r e e xists ̂ x ∈ X a n d ̂ e ∈ E su c h th a t ̂ x is a d ou b l e root o f f ( x ) ∶= f ( x ) − ̂ e . I f th e f un c tion f h a s a d ou b l e root , typi ca lly th e int e rv a l E is a v e ry n a rrow int e rv a l a roun d z e ro. S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 14 / 42

  15. Verific a tion o f multipl e roots T e typi ca l s ce n a rio in th e univ a ri a t e ca s e is a f un c tion f ∶ R → R with a d ou b l e root ̂ x , i. e . f (̂ x ) = f ′ (̂ x ) = 0 a n d f ′′ (̂ x ) ≠ 0. C onsi de r , f or e x a mpl e, 1 8 x 7 − 1 8 3 x 6 + 764 x 5 − 167 5 x 4 + 2040 x 3 − 1336 x 2 + 416 x − 4 8 f ( x ) = = ( 3 x − 1 ) 2 ( 2 x − 3 )( x − 2 ) 4 S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 1 5 / 42

  16. Verific a tion o f multipl e roots V e ri fica tion m e tho d s f or multipl e roots o f polynomi a ls a lr ead y e xist (Rump , 2003). A s e t c ont a ining k roots o f a polynomi a l is c omput ed, b ut no in f orm a tion on th e tru e multipli c ity ca n be giv e n. A hy b ri d a lgorithm ba s ed on th e m e tho d s o f (Rump , 2003) is impl e m e nt ed in a lgorithm verifypoly in INTL AB . C omputing in c lusions X1 , X2 a n d X3 o f th e simpl e root x 1 = 1 . 5, th e d ou b l e root x 2 = 1 / 3 a n d th e qu ad rupl e root x 3 = 2 o f f b y a lgorithm verifypoly in INTL AB w e o b t a in th e f ollowing. >> X1 = verifypoly(f,1.3), X2 = verifypoly(f,.3), X3 = verifypoly(f,2.1) intval X1 = [ 1.49999999999904, 1.50000000000078] intval X2 = [ 0.33333316656015, 0.33333343640539] intval X3 = [ 1.99741678159164, 2.00363593397305] S. Gr a ill a t (Univ. P a ris 6) V e ri f i ed e rror b oun d s f or multipl e roots 16 / 42

  17. Verific a tion o f multipl e roots ( c ont ’d ) Te accurac y o f t h e in c l us ion o f t h e d o ub l e r oo t x 2 = 1 / 3 i s m uc h l ess t h a n t h at o f t h e s impl e r oo t x 1 = 1. 5, a n d t hi s i s t ypi ca l. I f w e p erturb f in t o ̃ f ( x ) ∶= f ( x ) − ε f o r s om e s m a ll rea l c on sta n t ε a n d look at a p erturbed r oo t ̃ x + h ) o f ̃ f (̂ f , t h e n x ) h 2 + O( h 3 ) 0 = ̃ f (̂ 2 f ′′ (̂ x + h ) = − ε + 1 √ impli es 2 ε / f ′′ (̂ x ) . h ∼ In g e n era l flo at ing-poin t c omp utat ion s are affl i cted wi t h a re l at iv e err o r o f s iz e ε ≈ 10 − 1 6 . T i s h as t h e sa m e effect as a p erturbat ion o f t h e giv e n fu n ct ion f in t o ̃ t hi s in c l us ion t o be o f better re l at iv e accurac y t h a n √ ε ≈ 10 − 8 . f . But f o r d o ub l e r oo ts, w e ca nno t e xp ect S . G ra ill at ( U niv. P ar i s 6 ) V er i f i ed err o r b o u n ds f o r m u l t ipl e r oo ts 1 7 / 4 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend