updates on the pasta chip front end
play

Updates on the PASTA Chip Front-End Valen&no Di Pietro II. - PowerPoint PPT Presentation

Updates on the PASTA Chip Front-End Valen&no Di Pietro II. Physikalisches Ins&tut, JLU Gieen PANDA XLVII. Collabora&on Mee&ng GSI, December 10 th , 2013


  1. Updates on the PASTA Chip Front-End Valen&no ¡Di ¡Pietro ¡ II. ¡Physikalisches ¡Ins&tut, ¡JLU ¡Gießen ¡ ¡ ¡ PANDA ¡XLVII. ¡Collabora&on ¡Mee&ng ¡ GSI, ¡December ¡10 th , ¡2013 ¡ ¡

  2. Contents ① TOFPET front-end Ø Schematic Ø Performance ② Looking back to September Ø Front-end chain Ø Performance ③ Updates Ø Dual-polarity capable architecture ④ Conclusions and perspectives 2 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  3. PASTA Chip 3 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  4. PASTA Chip Based on TOFPET 3 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  5. PASTA Chip New design Based on TOFPET 3 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  6. TOFPET Front-End: Schematic 4 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  7. TOFPET Front-End: Schematic Common Gate Stage 4 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  8. TOFPET Front-End: Performance Linearity Noise ��� ���� � �������� ��� �������� ���� ��� ���� ��� ���� ����� ����� ����� ����� ����� ����� ���� ����� ������������������������ Simulations by Manuel D. Rolo 5 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  9. TOFPET Front-End: Performance Linearity Noise ��� ���� PASTA working range � �������� ��� �������� ���� ��� ���� ��� ���� ����� ����� ����� ����� ����� ����� ���� ����� ������������������������ Simulations by Manuel D. Rolo 5 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  10. Back to September FRONT-END CHAIN 6 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  11. Back to September Capable to process ONLY negative polarity signals 6 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  12. Back to September Capable to process ONLY OK negative polarity signals 6 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  13. Back to September Main cause of the non-linearity of the system Capable to process ONLY OK negative polarity signals 6 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  14. Back to September Main cause of the non-linearity of the system Capable to process ONLY Not yet OK negative polarity signals designed 6 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  15. Old Chain Performance Linearity Noise 7 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  16. Updates Ø Introduction of a dual-polarity capable architecture in the first stage (based on the design made by the BNL group for ATLAS Muon Spectrometer Upgrade) Ø First attempts to optimize the ToT Stage in order to reduce the non-linearity observed for low charges Ø Design of an hysteresis comparator in order to be less sensitive to the noise 8 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  17. BNL Architecture ���� � �������� � ������ � ��������� � � � � � � � ���� � � � � � � � �� � � � ��� � � � �� � � ���� � �� � ������� �� �� � ������ ������ � � � � ���� � �� � ���� ������ ���� �� ���� � ������ � � ���� � � � � ��� � ���������� � ������ � �� � ������� Slide from “VMM – a self-triggered front-end ASIC for ATLAS upgrades” by G. De Geronimo 9 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  18. PASTA Preamplifier Stage 10 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  19. PASTA Preamplifier Stage New Output Stage 10 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  20. PASTA Preamplifier Stage Open Closed Negative Plarity Configuration 10 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  21. PASTA Preamplifier Stage Open Closed Positive Plarity Configuration 10 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  22. Negative Polarity Input: Linearity MIP " % ( ) − f Q in ( ) nonLinearity = Mean ToT Q in = 0.21% $ ' ( ) ToT Q in $ ' # & 11 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  23. Positive Polarity Input: Linearity MIP " % ( ) − f Q in ( ) nonLinearity = Mean ToT Q in = 3.27% $ ' ( ) ToT Q in $ ' # & 12 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  24. “Dynamic” ToT Stage 13 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  25. “Dynamic” ToT Stage IDEAL 13 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  26. Negative Polarity Input 14 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  27. Negative Polarity Input Minimum detected charge >1fC 14 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  28. Positive Polarity Input 15 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  29. Details about the Threshold Ø Considering a minimum event rate per channel equal to 1kHz, the threshold to have a noise frequency of 1% is: V TH = − 2ln(4 3 ⋅ t peak ⋅ f n ) ⋅ V n , rms Rice, S.O. (1944). “Mathematical Analysis of Random Noise” 16 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  30. Details about the Threshold Ø Considering a minimum event rate per channel equal to 1kHz, the threshold to have a noise frequency of 1% is: V TH = − 2ln(4 3 ⋅ t peak ⋅ f n ) ⋅ V n , rms Peaking Time Noise Frequency Rms Noise Rice, S.O. (1944). “Mathematical Analysis of Random Noise” 16 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  31. Negative Polarity Input: Noise 17 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  32. Negative Polarity Input: Noise Longer Strips Capacitance Working Range 17 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  33. Positive Polarity Input: Noise 18 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  34. Positive Polarity Input: Noise Longer Strips Capacitance Working Range 18 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  35. Some important parameters Parameters Parameters Negative Negative Positive Positive (Q in in =1fC) =1fC) Polarity Polarity Input Input Polarity Polarity input input ENC ENC 1.1ke - 800e - SNR ( SNR (Q in in =4fC) =4fC) ~ 52 ~ 61 t peak 21.6ns 23.9ns peak Output Output rms rms 1.6mV 3.8mV Noise Noise Signal Signal length length ~430ns ~400ns (Q in in =40fC) =40fC) 19 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  36. Old VS New chain ü Dual-polarity capability ü ENC MAX [C det =20pF]: ~1.4ke - à ~1.1ke - (ATLAS noise ~1.5ke - ) ✗ Maximum signal length: x2 before 20 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  37. Conclusions and Perspectives Ø First two stages: ready for layout Ø Last stage: under study Ø Comparator: layout done Ø Understand key parameters Ø Layout all the stages Ø Submit 21 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  38. Conclusions and Perspectives Ø First two stages: ready for layout Ø Last stage: under study Ø Comparator: layout done Ø Understand key parameters Ø Layout all the stages Ø Submit 21 Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  39. Thank you for your kind attention

  40. Backup Slides

  41. NIP Configuration Linearity Residual Plot Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

  42. PIP Configuration Linearity Residual Plot Panda XLVII. Collaboration Meeting, GSI December 10 th , 2013 Valentino Di Pietro

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend