update on the color transparency experiment
play

Update on the Color Transparency Experiment e' p 16 July 2020 e - PowerPoint PPT Presentation

Update on the Color Transparency Experiment e' p 16 July 2020 e e John Matter p p' e 1 Summary CT definition Complete transparency 1.0 Optics CT onset Target Boiling Glauber Proton Absorption PID e ffi ciency Q


  1. Update on the Color Transparency Experiment e' p 16 July 2020 e e’ John Matter p p' e 1

  2. Summary • CT definition Complete transparency 1.0 • Optics CT onset • Target Boiling Glauber • Proton Absorption • PID e ffi ciency Q 2 ➝ Q 02 • Livetime e' • Tracking • Luminosity Scan (carbon "boiling") e • Systematic Uncertainty p • Results p' 2

  3. Color Transparency • Color Transparency - Vanishing of final/initial state interactions in exclusive processes at large momentum transfer • Squeezing - Scattering of point-like configurations - Small transverse size ⇒ attenuated strong interaction; color-neutral singlet • Freezing - Small size maintained as the hadron passes through nucleus 3

  4. Color Transparency • Define transparency T as the ratio Complete transparency 1.0 of the cross section for a given CT onset process on a bound nucleon to Glauber the cross section for the same process on a free nucleon Q 2 ➝ Q 02 • Glauber predicts constant T CT Experiments • CT predicts a rise in T Meson Baryon • CT onset observed in meson u u u ū d production; baryon results are ambiguous. A( 𝝆 ,di-jet): FNAL A(p,2p): BNL A(e,e’p): SLAC, JLab A( 𝛅 , 𝝆 - p): Jlab • Where is the onset? A(e, e’ 𝝆 + ): JLab A(e, e’ 𝛓 0 ): DESY & JLab 4

  5. Previous Measurements A(e,e’p) No onset… yet? PRL 72, 1986 (1994) PRB 351, 87 (1995) PRL 80, 5072 (1998) Solid points = JLab PRC 66, 044613 (2002) Open points = other PRC 72, 054602 (2005) PRC 45, 780 (1992) 5

  6. E12-06-107 • First 12 GeV era Hall C experiment in early 2018 • Coincidence trigger p • SHMS = proton e’ • HMS = electron • Targets • 10 cm LH 2 (Hee’p check) • 6% 12 C (production) e • Al dummy (LH 2 background) 6

  7. E12-06-107 SHMS 12 C(e,e’p) ● E12-06-107 Q 2 SHMS central HMS angle HMS central angle [GeV 2 ] P [GeV/c] [deg] P [GeV/c] [deg] V e G 4 . 6 m a e 8.0 17.1 5.122 45.1 2.131 b 9.5 21.6 5.925 23.2 5.539 10.6 GeV beam 11.5 17.8 7.001 28.5 4.478 14.3 12.8 8.505 39.3 2.982 7

  8. Blue = data Optics (Holly Szumila-Vance) Green = MC w/o radiative e ff ects Red = MC w/ radiative e ff ects E miss C12, Q 2 =8 GeV 2 W P miss C12, Q 2 =8 GeV 2 160 140 120 100 80 E miss [Gev] 60 40 20 0 0.3 0.2 0.1 0 0.1 0.2 0.3 − − − P miss [Gev] 8

  9. Optics (Holly Szumila-Vance & Deepak Bhetuwal) LH2 data Missing momentum is one of our most sensitive parameters, as it depends on momentum and angle in both spectrometers 9

  10. <latexit sha1_base64="Jk4ygRaEy5q84Nh4G0X073OUFM=">ACNHicbVDLSgMxFM3UV62vqks3F0tBKpQZEXQjFN0obqrYB7SlZNJMG5rMDElGYb5KDd+iBsRXCji1m8wfSy09ULgnHPvIfceN+RMadt+tTILi0vLK9nV3Nr6xuZWfnunroJIElojAQ9k08WKcubTma02YoKRYupw13eDHqN+6pVCzw73Qc0o7AfZ95jGBtpG7+OoYzEFCq27iGl8Kh+ACtG9Zf6CxlMEDGOZJTJI4TdzUTE+YGLPSL5vTzRfsj0umAfOFBTQtKrd/HO7F5BIUF8TjpVqOXaoOwmWmhFO01w7UjTEZIj7tGWgjwVnWR8dApFo/TAC6R5voax+tuRYKFULMySRYH1QM32RuJ/vVakvdNOwvw0tQnk4+8iIMOYJQg9JikRPYAEwkM7sCGWCTiTY50wIzuzJ86B+VHbsnNzXKicT+PIoj20jw6Qg05QBV2iKqohgh7RC3pH9aT9WZ9Wl+T0Yw19eyiP2V9/wDgFqif</latexit> <latexit sha1_base64="Jk4ygRaEy5q84Nh4G0X073OUFM=">ACNHicbVDLSgMxFM3UV62vqks3F0tBKpQZEXQjFN0obqrYB7SlZNJMG5rMDElGYb5KDd+iBsRXCji1m8wfSy09ULgnHPvIfceN+RMadt+tTILi0vLK9nV3Nr6xuZWfnunroJIElojAQ9k08WKcubTma02YoKRYupw13eDHqN+6pVCzw73Qc0o7AfZ95jGBtpG7+OoYzEFCq27iGl8Kh+ACtG9Zf6CxlMEDGOZJTJI4TdzUTE+YGLPSL5vTzRfsj0umAfOFBTQtKrd/HO7F5BIUF8TjpVqOXaoOwmWmhFO01w7UjTEZIj7tGWgjwVnWR8dApFo/TAC6R5voax+tuRYKFULMySRYH1QM32RuJ/vVakvdNOwvw0tQnk4+8iIMOYJQg9JikRPYAEwkM7sCGWCTiTY50wIzuzJ86B+VHbsnNzXKicT+PIoj20jw6Qg05QBV2iKqohgh7RC3pH9aT9WZ9Wl+T0Yw19eyiP2V9/wDgFqif</latexit> <latexit sha1_base64="Jk4ygRaEy5q84Nh4G0X073OUFM=">ACNHicbVDLSgMxFM3UV62vqks3F0tBKpQZEXQjFN0obqrYB7SlZNJMG5rMDElGYb5KDd+iBsRXCji1m8wfSy09ULgnHPvIfceN+RMadt+tTILi0vLK9nV3Nr6xuZWfnunroJIElojAQ9k08WKcubTma02YoKRYupw13eDHqN+6pVCzw73Qc0o7AfZ95jGBtpG7+OoYzEFCq27iGl8Kh+ACtG9Zf6CxlMEDGOZJTJI4TdzUTE+YGLPSL5vTzRfsj0umAfOFBTQtKrd/HO7F5BIUF8TjpVqOXaoOwmWmhFO01w7UjTEZIj7tGWgjwVnWR8dApFo/TAC6R5voax+tuRYKFULMySRYH1QM32RuJ/vVakvdNOwvw0tQnk4+8iIMOYJQg9JikRPYAEwkM7sCGWCTiTY50wIzuzJ86B+VHbsnNzXKicT+PIoj20jw6Qg05QBV2iKqohgh7RC3pH9aT9WZ9Wl+T0Yw19eyiP2V9/wDgFqif</latexit> <latexit sha1_base64="Jk4ygRaEy5q84Nh4G0X073OUFM=">ACNHicbVDLSgMxFM3UV62vqks3F0tBKpQZEXQjFN0obqrYB7SlZNJMG5rMDElGYb5KDd+iBsRXCji1m8wfSy09ULgnHPvIfceN+RMadt+tTILi0vLK9nV3Nr6xuZWfnunroJIElojAQ9k08WKcubTma02YoKRYupw13eDHqN+6pVCzw73Qc0o7AfZ95jGBtpG7+OoYzEFCq27iGl8Kh+ACtG9Zf6CxlMEDGOZJTJI4TdzUTE+YGLPSL5vTzRfsj0umAfOFBTQtKrd/HO7F5BIUF8TjpVqOXaoOwmWmhFO01w7UjTEZIj7tGWgjwVnWR8dApFo/TAC6R5voax+tuRYKFULMySRYH1QM32RuJ/vVakvdNOwvw0tQnk4+8iIMOYJQg9JikRPYAEwkM7sCGWCTiTY50wIzuzJ86B+VHbsnNzXKicT+PIoj20jw6Qg05QBV2iKqohgh7RC3pH9aT9WZ9Wl+T0Yw19eyiP2V9/wDgFqif</latexit> Target boiling (Carlos Yero) Divide by the offset parameter 
 y = m ∗ I beam + b ⇒ y b = m b ∗ I beam + 1 to re-normalize data to unity y Fit slope represents ‘fractional yield loss per uA’ https://hallcweb.jlab.org/DocDB/0010/001023/001/April2018_BoilingStudies.pdf 10

  11. SHMS Proton Absorption A = 1 − exp { − ∑ • Based on the materials in the proton’s path, I λ i } x i estimate absorption to be 8.9%* • From CT data, I estimate 8.5 ± 0.5% 1. Place tight SHMS acceptance cuts on good ep coincidences 2. Pick tight HMS-only cuts that produce the same distributions y 3. Calculate yields from ep coincidence and HMS A = 1 − Y coin singles data Y singles • For comparison, Carlos estimates 4.66 ± 0.47% in the HMS • https://hallcweb.jlab.org/DocDB/ 0010/001020/002/ProtonAbsorption_slides.pdf * https://docs.google.com/spreadsheets/d/1LeaFrQjKTuOeliKTEN8QAHqDkFCYzW18bMMjTKu1ejQ 11

  12. PID Efficiency 
 Calculated per delta bin, then weighted ∑ i w i ϵ i ϵ = ¯ ∑ j w j n i , did ϵ i = w i = 1/ σ 2 HMS SHMS i n i , should 1.00 ϵ i 0.99 Calorimeter 1 0.98 0.98 0.97 target efficiency 0.96 0.96 C12_thick 1.00 0.94 LH2 y 0.99 Cherenkov 0.92 0.98 0.9 0.97 6 4 2 0 2 4 6 8 − − − δ 0.96 8 9.5 11.5 14.3 8 9.5 11.5 14.3 Q 2 [GeV 2 ] 12

  13. Livetime SHMS CLT A = T pTRIG6 /S pTRIG6 100.0 • Place appropriate BCM cuts as.factor(Q2) 8 • T = number of accepted triggers 9.5 11.5 (T.shms.pTRIG1_tdcTimeRaw!=0) 14.3 CLT A 99.9 • S = scaler counts y target (P .pTRIG1.scaler) C12_thick C12_thin • Prescale factor P=1+2^(ps-1) LH2 • CLT A = P * T / S 99.8 0.003 0.004 0.005 0.006 pTRIG6 Rate [kHz] 13

  14. Livetime SHMS LT E = T EDTM /S EDTM 102 101 as.factor(Q2) • Place appropriate BCM cuts 8 100 • T = number of accepted triggers 9.5 99 11.5 98 (T.coin.pEDTM_tdcTimeRaw!=0) 14.3 LT E 97 • S = scaler counts 96 y target (P .pEDTM.scaler) C12_thick 95 C12_thin 94 LH2 93 • LT E = T / S 92 0 25 50 75 100 pTRIG1 Rate [kHz] 14

  15. Tracking Efficiency • Select events that should form a track HMS SHMS 1.00 (PID cut) && P.hod.betanotrack < 1.2 
 && (fewer than 21 hits per DC) 
 && P.hod.goodscinhit==1 
 0.99 target && P.hod.goodstarttime==1 efficiency Tracking C12_thick • How many did? LH2 0.98 P.dc.ntrack==1 || 
 y (P.dc.ntrack>1 && abs(P.gtr.dp)<15 
 && abs(P.gtr.y)<5 
 0.97 && abs(P.gtr.th)<0.2 
 8 9.5 11.5 14.3 8 9.5 11.5 14.3 Q 2 [GeV 2 ] && abs(P.gtr.ph)<0.2 
 && -10 < P.hod.1x.fptime < 5 
 && P.hod.1x.totNumGoodNegAdcHits<5 
 && (same two cuts for 1y, 2x, 2y)) 15

  16. Luminosity Scan 1 Corrected Yield Charge normalized yield [#/uC] • SHMS runs 1992–2000, each with di ff erent ● 184 steady currents between 2 uA and 65 uA ● ● ● ● ● 182 • C12 0.5% target ● ● • Calculate yields and correct for detector 180 ● e ffi ciency, livetime, and prescale factor • Calculating precent change in yield per uA, we 0 20 40 60 y BCM4A Current [uA] get 0.008 ± 0.010% which is consistent with Y = m * I + b zero m = 0.014 ± 0.019 • Typical currents for CT data are 50 uA, or b = 181.79 ± 0.74 0.4% per uA 16

  17. Luminosity Scan 2 • SHMS runs 3109–3114, each with di ff erent steady currents between 2.5 uA and 60 uA • C12 1.5% target • Calculate yields and correct for detector e ffi ciency, livetime, and prescale factor in progress • I’m still working on this, but Deepak’s result is -0.1%/uA y • Can estimate systematic uncertainty for livetime, PID, and tracking from the di ff erence between the results of these two luminosity scans • Based on Deepak’s results, we expect 0.5% systematic uncertainty due to livetime and e ffi ciency corrections 17

  18. E12-06-107 TABLE II. Systematic Uncertainties Q 2 dependent uncertainty (%) Source 1 Spectrometer acceptance 3.0 2 Event selection 1.5 Tracking e ffi ciency 3 Radiative corrections 1.0 Live time correction Source Normalization uncertainty (%) Free cross section 2.0 Target thickness 0.5 Beam charge 1.0 Proton absorption 0.5 Total 12 0 1. Preliminary number based on agreement between Pm spectra from simc and data 2. See cut study at https://hallcweb.jlab.org/elogs/ Color+Transparency/48 3. Determined from variation in corrections for di ff erent model parameter choices 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend