update on cteq tea pdfs
play

Update on CTEQ-TEA PDFs Carl Schmidt Michigan State University On - PowerPoint PPT Presentation

Update on CTEQ-TEA PDFs Carl Schmidt Michigan State University On behalf of the CTEQ-TEA group July 31, 2107 DPF 2017 Fermilab, Batavia, IL, USA CTEQ-TEA group CTEQ Tung et al. (TEA) in memory of Prof. Wu-Ki Tung, who established


  1. Update on CTEQ-TEA PDFs Carl Schmidt Michigan State University On behalf of the CTEQ-TEA group July 31, 2107 DPF 2017 Fermilab, Batavia, IL, USA

  2. CTEQ-TEA group • CTEQ – Tung et al. (TEA) in memory of Prof. Wu-Ki Tung, who established CTEQ Collaboration in early 90’s • Current members of CTEQ-TEA group: Sayipjamal Dulat (Xinjiang U.), Tie-Jiun Hou, Pavel Nadolsky, Bo-Ting Wang, Keping Xie (Southern Methodist U.), Jun Gao (Shanghai Jiaotong U), Marco Guzzi (U. of Manchester & Kennesaw State), Joey Huston, Jon Pumplin, Dan Stump, CS, Jan Winter, C.-P.Yuan (Michigan State U.)

  3. CT14 Parton Distributions • 2015 major release of general purpose PDFs CT14NNLO/NLO, including α s u series and n f =3,4,5 [1506.07443] d g • Combined HERA charm, H1 FL data in NC DIS s • Early LHC Run 1 data on W/Z charged lepton rapidity and asymmetry • Inclusive jet production from ATLAS & CMS • More flexible parametrization: gluon, d/u at large- x, d/u & dbar/ubar at small-x, 28 eigenvectors compared to 25 for CT10 • http://hep.pa.msu.edu/cteq/public/index.html

  4. Beyond standard CT14 • CT14QEDinc: constraints on photon PDFs in the nucleon [1509.02905] • CT14MC: MC replicas for certain applications [1607.06066] • CT14HERA2: effects of combined HERA1+2 data [1609.07968] • CT14IC: intrinsic/fitted charm component [1707.00657] • CT17: preliminary fits (CT17p)

  5. Outline • CT14IC (intrinsic charm) • CT17 preliminary fits and impact of new data • LHC ttbar distributions (ATLAS 8 TeV) • Conclusion

  6. Fitted Charm and CT14IC • Charm PDF in CT14 is generated perturbatively from c ( x , Q 0 = m c )=0 (nonzero matching at NNLO) • However, nonzero c ( x , Q 0 = m c ) is possible at % level of total mom. fraction • “fitted charm” = “nonperturbative charm” + other higher order terms in α s or Λ 2 / m c 2 • Dominant higher twist terms evolve in Q just as twist-2 terms • Perturbative charm cancels at Q ~ m c up to higher order in α s • Assume factorization holds .

  7. Parametrizations of c(x,Q 0 ) 1. “Valence-like” intrinsic charm: BHPS1 and BHPS2 (Brodsky et al PLB 1980)  1 � c ( x ) = 1 2 Ax 2 3(1 − x ) (1 + 10 x + x 2 ) − 2 x (1 + x ) ln (1 /x ) c ( x ) = ¯ 2. “BHPS3 model”: compute numerical solutions to BHPS model with physical masses, and include uubar, ddbar, ccbar intrinsic components => gives physical behavior of c/ubar, c/dbar at large x 3. “Sea-like” models SEA1, SEA2 ⇥ ¯ ⇤ c ( x ) = ¯ c ( x ) = A d ( x, Q 0 ) + ¯ u ( x, Q 0 )

  8. Models of IC in the proton IC models in the CT14IC fit, Q = 1.3 GeV, N f = 4 IC models in the CT14IC fit, Q = 2 GeV, N f = 4 0.02 0.02 1000*CT14-pert. CT14-pert. BHPS1 BHPS1 BHPS2 BHPS2 BHPS3 BHPS3 0.015 0.015 SEA1 SEA1 SEA2 SEA2 xc(x,Q) xc(x,Q) 0.01 0.01 0.005 0.005 0 0 0.001 0.01 0.1 1 0.001 0.01 0.1 1 x x There is a sizable perturbative contribution, • Valence-like models: BHPS1, BHPS2, BHPS3 just from evolving from 1.3 to 2.0 GeV. • Sea-like models: SEA1, SEA2 • Perturbative: No IC contribution

  9. <x> IC for various models 120 120 CT14 Q 0 =1.3GeV CT14HERA2 Q 0 =1.3GeV 100 100 BHPS BHPS BHPS + Tier-2 BHPS + Tier-2 80 80 SEA SEA 60 SEA + Tier-2 60 SEA + Tier-2 ∆χ 2 ∆χ 2 40 40 SEA2 BHPS2 20 20 SEA1 0 0 BHPS1 -20 -20 BHPS3 -40 -40 0 0.01 0.02 0.03 0 0.01 0.02 0.03 < x > IC < x > IC 1 • Defining: at Q 0 =1.3 GeV ∫ x IC = x c ( x , Q c ) + c ( x , Q c ) [ ] dx 0 • 90% CL limits for CT14 and CT14HERA2 fits, using charm pole mass m c =1.3 GeV:

  10. Dependence on charm mass 120 120 CT14, SEA Q 0 =1.0 GeV CT14, BHPS Q 0 =1.0 GeV 100 100 m c =1.5 GeV m c =1.5 GeV m c =1.4 GeV m c =1.4 GeV 80 80 m c =1.3 GeV m c =1.3 GeV 60 60 m c =1.2 GeV m c =1.2 GeV m c =1.1 GeV m c =1.1 GeV ∆χ 2 ∆χ 2 40 40 20 20 0 0 -20 -20 -40 -40 0 0.01 0.02 0.03 0 0.01 0.02 0.03 < x > IC < x > IC • CT14NNLO (no IC) fits prefer light MSbar charm mass m c ( m c ) ~ 1.2-1.3 GeV • Exact value depends slightly on gluon parametrization. • BHPS models are roughly independent of m c . • SEA models with larger m c allow associated larger < x > IC .

  11. Impact of IC on PDFs 5.0 2.0 c(x,Q) at Q =2.0 GeV 90% C.L. c(x,Q) at Q =100.0 GeV 90% C.L. CT14NNLO CT14NNLO PDF Ratio to CT14NNLO PDF Ratio to CT14NNLO 4.0 BHPS1 BHPS1 BHPS2 BHPS2 1.5 BHPS3 BHPS3 3.0 SEA1 SEA1 SEA2 SEA2 2.0 1.0 1.0 0.0 0.5 10 -4 10 -3 10 -1 0.2 10 -4 10 -3 10 -1 0.2 10 -2 10 -2 0.5 0.9 0.5 0.9 x x • At low Q : • SEA models uniformly above CT14 • BHPS models dominant at high x • At high Q , perturbative contribution dominates at low x

  12. Impact of IC on gg luminosity L gg at E cm =8.0 TeV, 68% C.L. L gg at E cm =13.0 TeV, 68% C.L. 1.2 1.2 CT14NNLO CT14NNLO BHPS1 BHPS1 BHPS2 BHPS2 Ratio to CT14NNLO Ratio to CT14NNLO 1.1 1.1 BHPS3 BHPS3 SEA1 SEA1 SEA2 SEA2 1.0 1.0 0.9 0.9 0.8 0.8 10 1 10 2 10 3 10 1 10 2 10 3 [GeV] M [GeV] M X X • Sea models: gg luminosity suppressed at low M X , enhanced at high M X • BHPS models: suppressed at high M X • Impact on Higgs cross section small. • Sizable impact for high mass gg luminosities, but still within uncertainties.

  13. Impact on LHC observables 9.5 50 BHPS1 BHPS1 LHC 13 TeV LHC 13 TeV BHPS2 BHPS2 CT14 NNLO 90% C.L., m pole c =1.3 GeV BHPS3 BHPS3 H(gluon fustion) [pb] SEA1 SEA1 9.0 SEA2 SEA2 45 W - [nb] 8.5 40 1603.09222 ATLAS-CONF-2016-081 CT14 NNLO 90% C.L., m pole c =1.3 GeV 1603.09222 8.0 11.0 11.5 12.0 1850 1900 1950 2000 2050 W + [nb] Z [pb] • Impact on inclusive Higgs, Z, W + , W - cross sections is mild.

  14. m c and <x> IC dependence 45 9.0 LHC 13 TeV LHC 13 TeV CT14 NNLO 90% C.L., m pole CT14 NNLO 90% C.L., m pole c =1.3 GeV c =1.3 GeV 8.8 H(gluon fustion) [pb] 44 <x> IC =3% 8.6 W - [nb] BHPS m pole 43 c =1.1 m pole c =1.5 8.4 m pole <x> IC =0% m pole c =1.5 c =1.1 CT14IC BHPS, Q 0 =1.0 GeV 42 8.2 • LHC 13 TeV CT14IC BHPS, Q 0 =1.0 GeV • CT14NNLO 41 8.0 1850 1900 1950 11.0 11.2 11.4 11.6 11.8 12.0 W + [nb] @ 90%CL Z [pb] 45 9.0 • m c = 1.1-1.5 GeV LHC 13 TeV LHC 13 TeV CT14 NNLO 90% C.L., m pole CT14 NNLO 90% C.L., m pole c =1.3 GeV c =1.3 GeV • < x > IC = 0 - 3% 8.8 H(gluon fustion) [pb] 44 8.6 CT14IC SEA, Q 0 =1.0 GeV W - [nb] m pole SEA c =1.1 43 <x> IC =0% m pole m pole m pole c =1.5 c =1.1 c =1.5 8.4 42 8.2 CT14IC SEA, Q 0 =1.0 GeV <x> IC =3% 41 8.0 11.0 11.2 11.4 11.6 11.8 12.0 1850 1900 1950 W + [nb] Z [pb]

  15. Z+c @ LHC 13 TeV, NLO Fixed order Parton Shower with Sherpa Z Sherpa CT14nnlo 1 − d /dp (pb/GeV) σ 10 − 1 10 Sherpa BHPS2 T Sherpa BHPS3 − 2 LHC 13 TeV 10 2 − Sherpa SEA1 10 Sherpa SEA2 MCFM CT14nnlo 3 − 3 10 − 10 CT14nnlo BHPS2 4 − 10 4 − 10 Z BHPS3 d /dp (pb/GeV) σ T 5 SEA1 − 10 − 5 10 LHC 13 TeV SEA2 2 1.5 Ratio to Sherpa CT14nnlo CT14nnlo PDF unc. 1.8 1.4 1.6 Ratio to CT14nnlo 1.3 1.4 1.2 1.2 1.1 1 1 0 100 200 300 400 500 600 0 100 200 300 400 500 600 Z p (GeV) Z p (GeV) T T • High pT excess of BHPS models is dampened by parton showers.

  16. CT17p : new data to be included • Combined HERA 1+2 DIS update ✔ ︎ • LHCb 7 TeV Z,W muon rapidity distribution update ✔ ︎ • LHCb 8 TeV Z,W muon rapidity distribution update ✔ ︎ • ATLAS 7 TeV inclusive jet update ✔ ︎ • CMS 7 TeV inclusive jet (extended y range) update ✔ ︎ • ATLAS 7 TeV Z pT distribution NEW ✔ ︎ • LHCb 13 TeV Z rapidity distribution update • CMS 8 TeV Z pT and rapidity distribution (double diff.) NEW • CMS 8 TeV W muon rapidity distribution update • ATLAS 7 TeV W/Z lepton rapidity distribution update • CMS 7,8 TeV tT differential distribution NEW • ATLAS 7,8 TeV tT differential distribution NEW

  17. ATLAS 8 TeV Data Data: Eur. Phys. J. C76 (2016) 538, arXiv: 1511.04716 Measurements of top-quark pair di ff erential cross-sections in the lepton + jets ATLAS 8 TEV ttbar Data channel in pp collisions at 8 TeV using the ATLAS detector • Eur. Phys. J. C76 (2016) 538, arXiv: 1511.04716 ATLAS 8 TeV Data • M ttbar , p t T , |y t |, |y ttbar | Data: Eur. Phys. J. C76 (2016) 538, arXiv: 1511.04716 Measurements of top-quark pair di ff erential cross-sections in the lepton + jets Including �� distribution data channel in pp collisions at 8 TeV using the ATLAS detector • Micha� Cza���, David Hey�es a�d A�exa�der Mit�v re�ease fastNLO tab�es with NNLO QCD top-quark pair production at 8TeV arXiv: 1704.08551 • Theory: Michal Czakon, David Heymes and Alexander Mitov • fastNLO tables with NNLO QCD, arXiv:1704.08551 |� �� | Shows the least agreement with NNLO prediction, with MRST2008nnlo PDFs. �� • Micha� Cza���, David Hey�es a�d A�exa�der Mit�v re�ease fastNLO tab�es with NNLO QCD top-quark pair production at 8TeV arXiv: 1704.08551

  18. Correlation with g-PDF @ 100 GeV Correlation of -PDF @ 100 GeV � (t) �� ��� X X X Strong correlation of g-PDF found in large x region. Strong correlation at large x

  19. Estimating impact of new data ePump: error PDF updating method package - a package for (very quickly) estimating impact of new data using Hessian eigenvector PDFs - C.-P. Yuan, J. Pumplin, CS: arXiv: 1708.xxxxx - based on ideas of H. Paukkunen and P. Zurita [1402.6623]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend