unlocking the structure of new physics at the lhc
play

Unlocking the Structure of New Physics at the LHC Natalia Toro - PowerPoint PPT Presentation

Unlocking the Structure of New Physics at the LHC Natalia Toro hep-ph/0703088: Arkani-Hamed et al 0810.3921: Alwall, Schuster, NT work in progress: UCSB CMS group (special thanks: S.A. Koay) Hadron Collider 101 A x 1 , x


  1. Unlocking the Structure of New Physics at the LHC Natalia Toro hep-ph/0703088: Arkani-Hamed et al 0810.3921: Alwall, Schuster, NT work in progress: UCSB CMS group (special thanks: S.A. Koay)

  2. Hadron Collider 101 A x 1 , x 2 : fraction of beam energy x 1 E 1 x 2 E 2 carried by each parton B � dx 1 x 1 f g ( x 1 , Q ) x 2 f q ( x 2 , Q ) d ˆ σ ( qg → AB ) d σ inc dx 2 d Vars = d Vars x 1 x 2

  3. Hadron Collider 101 A x 1 , x 2 : fraction of beam energy x 1 E 1 x 2 E 2 carried by each parton B � dx 1 x 1 f g ( x 1 , Q ) x 2 f q ( x 2 , Q ) d ˆ σ ( qg → AB ) d σ inc dx 2 d Vars = d Vars x 1 x 2 � = d ˆ s s d ¯ y ˆ uu arbit. u ¯ u/ug u ¯ u/ug arbit. scale scale uu gg gg parton E 2 (1 TeV) cm (300 GeV) CM boost y (CM boost) ¯ y (CM boost) ¯ CM-frame boost ⇒ multi-particle Lorentz invariants and p T ’s

  4. Multi-Particle Mass Invariants Edge/endpoint: Full reconstruction and m T2 : ℓ ℓ q χ 0 χ 0 ˜ ˜ ℓ q 2 1 Many more variables: – precision mass measurement at hadron colliders! To construct invariants, must pair/group particles. To pair, must know decay topology. Not known a priori . ...100 fb -1 What can be learned from simpler p T ’s? (and lower statistics)

  5. Using Transverse Momenta H T = � | p T | , � E T = � � Useful combinations: p T 1) H T bump ~ 1–2 x produced particle mass: H T for Models with (depends on decay chain, LSP mass) M=650–700 GeV (after cuts) H T (GeV) 2) Locations of p T bumps ~ relative mass scales Leading Lepton p T +jet jet p T +lepton & counts are search variables → understood early. p T , H T , � E T They suffice to build good hypotheses for mass spectra, cascades, then isolate decay modes for precision mass measurement.

  6. Outline 1. Hadron Collider Observables and Ambiguities - Goal: “Basis of Parameters” for new physics to model most relevant observables and address (subset of) theoretical questions. - p T in Pair Production (mostly independent of M.E!) - p T ’s and counts insensitive to complex decay chains 2. Designing Robust and General New-Physics Searches (results from UCSB CMS group) 3. Building up from very simple description of new physics

  7. p T Distributions Simple and instructive to calculate p T distribution for 2 → 2 product with general matrix element: � dx 1 x 1 f g ( x 1 , Q ) x 2 f q ( x 2 , Q ) d ˆ σ ( qg → AB ) d σ inc dx 2 d Vars = d Vars x 1 x 2 � � � = d ˆ s ∼ (1 − x ) p x − q parton cross-section PDF’s s d ¯ y ˆ � → parton luminosity d ¯ y s, Q 2 ) ∝ (ˆ s/S tot ) − q ρ (ˆ ( q ~1–1.5) parton E 2 cm CM boost s/S tot , Q 2 ) gg ρ (ˆ s 2 � � s = 1 s 2 d ˆ d σ Q 2 = (500 GeV) 2 σ ug uu s 2 0 s, Q 2 ) s 2 ρ (ˆ ˆ 0 d ˆ d ˆ ˆ ˆ s td ˆ t u ¯ u � 1 s, ˆ t ) | 2 8 π |M (ˆ (1 TeV) (300 GeV) s 0 = 2 M 2 ( : threshold s ) s/S tot τ = ˆ

  8. p T Distributions s 2 d σ 1 s 2 0 s, Q 2 ) |M| 2 s = s 2 ρ (ˆ s/S tot ) − q ρ (ˆ s, s 0 ) ≈ A (ˆ 0 d ˆ td ˆ ˆ s s & ˆ s & p 2 CM-frame Lorentz invariants: or or s & ξ ˆ ˆ ˆ t T u − M 4 t = − 1 ˆ t ˆ ˆ ⇒ dp 2 s = ξ d ˆ p 2 related by: 2 [ˆ s (1 − ξ ) − s 0 ] T d ˆ td ˆ s T = s ˆ “pure angular” variable linearly related to ξ ∼ β cos θ CM : → good variable for M.E. expansion

  9. p T Distributions � 1 S tot S tot s 2 d σ d σ � = 1 d ˆ s s 2 s 2 0 s, Q 2 ) |M| 2 s = s 2 ρ (ˆ d ˆ s s/S tot ) − q ρ (ˆ s, s 0 ) ≈ A (ˆ 0 0 d ˆ dp 2 ξ td ˆ ξ s ˆ T s 0 + 4 p 2 s 0 + 4 p 2 T T s & ˆ s & p 2 CM-frame Lorentz invariants: or or s & ξ ˆ ˆ ˆ t T u − M 4 t = − 1 ˆ t ˆ ˆ ⇒ dp 2 s = ξ d ˆ p 2 related by: 2 [ˆ s (1 − ξ ) − s 0 ] T d ˆ td ˆ s T = s ˆ “pure angular” variable linearly related to ξ ∼ β cos θ CM : → good variable for M.E. expansion

  10. p T Distributions � 1 S tot S tot s 2 d σ d σ � = 1 d ˆ s s 2 s 2 0 s, Q 2 ) |M| 2 s = s 2 ρ (ˆ d ˆ s s/S tot ) − q ρ (ˆ s, s 0 ) ≈ A (ˆ 0 0 d ˆ dp 2 ξ td ˆ ξ s ˆ T s 0 + 4 p 2 s 0 + 4 p 2 T T s & ˆ s & p 2 CM-frame Lorentz invariants: or or s & ξ ˆ ˆ ˆ t T u − M 4 t = − 1 ˆ t ˆ ˆ ⇒ dp 2 s = ξ d ˆ p 2 related by: 2 [ˆ s (1 − ξ ) − s 0 ] T d ˆ td ˆ s T = s ˆ “pure angular” variable linearly related to ξ ∼ β cos θ CM : → good variable for M.E. expansion |M| 2 = � C m,n (ˆ s/s 0 ) m ξ n Expand near threshold (usually dominated by low m , n ) � s 0 � d ˆ S tot � − q � d σ s s 2 s/s 0 ) m − q − 2 ξ n = C m,n s (ˆ 0 dp 2 S tot ξ ˆ T m,n s 0 + 4 p 2 T

  11. p T Distributions � 1 S tot S tot s 2 d σ d σ � = 1 d ˆ s s 2 s 2 0 s, Q 2 ) |M| 2 s = s 2 ρ (ˆ d ˆ s s/S tot ) − q ρ (ˆ s, s 0 ) ≈ A (ˆ 0 0 d ˆ dp 2 ξ td ˆ ξ s ˆ T s 0 + 4 p 2 s 0 + 4 p 2 T T s & ˆ s & p 2 CM-frame Lorentz invariants: or or s & ξ ˆ ˆ ˆ t T u − M 4 t = − 1 ˆ t ˆ ˆ ⇒ dp 2 s = ξ d ˆ p 2 related by: 2 [ˆ s (1 − ξ ) − s 0 ] T d ˆ td ˆ s T = s ˆ “pure angular” variable linearly related to ξ ∼ β cos θ CM : → good variable for M.E. expansion |M| 2 = � C m,n (ˆ s/s 0 ) m ξ n Expand near threshold (usually dominated by low m , n ) � s 0 � d ˆ S tot � − q � d σ s s/s 0 = 1 + 4 p 2 T /s 0 s 2 s/s 0 ) m − q − 2 ξ n = C m,n s (ˆ ˆ 0 dp 2 S tot ξ ˆ 1 − ξ 2 T m,n s 0 + 4 p 2 T � s 0 ≈ 1 � − q � 2 d ξ � 1 − ξ 2 (1 − ξ 2 ) − m + q +2 ξ n × (1 + 4 p 2 T /s 0 ) m − q − 2 = C m,n S tot m,n 0

  12. p T Distributions � 1 S tot S tot s 2 d σ d σ � = 1 d ˆ s s 2 s 2 0 s, Q 2 ) |M| 2 s = s 2 ρ (ˆ d ˆ s s/S tot ) − q ρ (ˆ s, s 0 ) ≈ A (ˆ 0 0 d ˆ dp 2 ξ td ˆ ξ s ˆ T s 0 + 4 p 2 s 0 + 4 p 2 T T s & ˆ s & p 2 CM-frame Lorentz invariants: or or s & ξ ˆ ˆ ˆ t T u − M 4 t = − 1 ˆ t ˆ ˆ ⇒ dp 2 s = ξ d ˆ p 2 related by: 2 [ˆ s (1 − ξ ) − s 0 ] T d ˆ td ˆ s T = s ˆ “pure angular” variable linearly related to ξ ∼ β cos θ CM : → good variable for M.E. expansion |M| 2 = � C m,n (ˆ s/s 0 ) m ξ n Expand near threshold (usually dominated by low m , n ) � s 0 � d ˆ S tot � − q � d σ s s/s 0 = 1 + 4 p 2 T /s 0 s 2 s/s 0 ) m − q − 2 ξ n = C m,n s (ˆ ˆ 0 dp 2 S tot ξ ˆ 1 − ξ 2 T m,n s 0 + 4 p 2 T � s 0 ≈ 1 � − q � 2 d ξ � 1 − ξ 2 (1 − ξ 2 ) − m + q +2 ξ n × (1 + 4 p 2 T /s 0 ) m − q − 2 = C m,n S tot m,n � 0 Euler B -function shape independent of n

  13. p T Universality pT variables are useful because they are simple, single-particle Lorentz invariants and insensitive to production matrix element! d σ |M| 2 ∼ (ˆ ∼ (1 + p 2 T /M 2 ) m − q − 2 s/s 0 ) m ξ n , ρ (ˆ s ) ∼ ˆ s − q for dp 2 T Typical p T ~ 0.5 M • Not completely universal - Depends on m (different for p-wave and contact operators) - Depends on q (sensitive to init. state) - Observable p T ’s depend on decay M.E. • But easy to get similar effects (after cuts) by changing s 0 – simple analysis can’t distinguish • Similarly, η distribution indep. of m – even different n – convolved with y distribution have similar shape “Shape invariance” Arkani-Hamed et al, hep-ph/0703....

  14. Why bother? • Shape invariance: a clear guide to information that can be stripped out & still do meaningful analysis • Why understand these? - Important (approximate) ambiguities to be aware of in any description of positive signal at LHC - Allows predictions, MC generation, simulation of detector response w/o full knowledge of model Lagrangian - Suggest search/interpretation strategies with wide reach compared to no. of parameters

  15. How much do you need to say about model to predict LHC signals? Specialize to models like SUSY – pair production, no fully-reconstructed decays • Masses and quantum numbers of produced particles • Production cross-sections (and near-threshold behavior) • Branching fractions to different final states • To predict invariant mass distributions , also need to know intermediate spins. First three: O n- S hell E ffective T heory – hep-ph/0703088 Much less detail than full Lagrangian – but even at this level data can be ambiguous...

  16. Squarks + Gluino Example ˜ q L,R ˜ q L,R +jet +jet ˜ g Mass ˜ g +2j +2j +2j Extreme spectra well +2j χ 0 χ 0 described by fewer 2 2 χ 0 χ 0 particles –> can’t 1 1 resolve squark mass q − m ˜ g ≫ m ˜ q − m ˜ g ≪ m ˜ m ˜ m ˜ in these cases g g ⇓ ⇓ g ≪ σ ˜ jet from squark decay σ ˜ q , σ ˜ q ˜ q ˜ g ˜ g very soft can ignore squarks can ignore squarks

  17. � � � � � � � � � � � � � � � � � Overlapping Lepton Sources Many handles: frequency of n -lepton events, flavor & sign correlations. G E T � T E T E T * ℓ � T ν or ℓ ℓ q ν q ℓ G ℓ or ν q q q q G G q q G G G G q q q q q q q G G G G G q q q q G G G G G q q q ℓ q q q q /Z ( ∗ ) Lepton Cascades ℓ or ν ℓ ℓ * ℓ ν or ℓ * E T E T G E T E T G Two decay modes Just 2 flavor-uncorrelated populate 0, 2, 4 leptons, leptons flavor correlation distinguishable but.... Q Q Q Q Q q q Q q ν Q q Q Q ℓ Q ℓ ℓ q q q ℓ ℓ Q Q

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend