universal edge transport in interacting hall systems
play

Universal edge transport in interacting Hall systems Marcello Porta - PowerPoint PPT Presentation

Universal edge transport in interacting Hall systems Marcello Porta University of Z urich, Institute for Mathematics Joint work with G. Antinucci (UZH) and V. Mastropietro (Milan) Hall effect Hall effect (Edwin Hall 1879): J 1 E J 2 B


  1. Universal edge transport in interacting Hall systems Marcello Porta University of Z¨ urich, Institute for Mathematics Joint work with G. Antinucci (UZH) and V. Mastropietro (Milan)

  2. Hall effect • Hall effect (Edwin Hall 1879): J 1 E J 2 B • Linear response (weak E ): J 1 = σ 11 E , J 2 = σ 21 E . σ 11 = longitudinal conductivity, σ 21 = − σ 12 = Hall conductivity. Marcello Porta Edge transport July 6, 2017 1 / 17

  3. Integer quantum Hall effect • von Klitzing ’80. Experiment on GaAs-heterostructures (insulators). σ 21 3 measurement 2 1 classical prediction ρ σ 11 ( ρ = density of charge carriers.) IQHE: σ 21 = e 2 h · n , n ∈ Z . • Theory for noninteracting systems: Laughlin ’81, Thouless et al. ’82 ... Rigorous results: Avron-Seiler-Simon ’83, Bellissard et al. ’94, Aizenman-Graf ’98 ... Marcello Porta Edge transport July 6, 2017 2 / 17

  4. Bulk-edge correspondence • Halperin ’82. Hall phases come with robust edge currents. Figure: Magnetic field points out of the screen. • Edge currents are necessary to preserve gauge invariance. Essential feature of the gauge theory of states of matter [Fr¨ ohlich ’91] Marcello Porta Edge transport July 6, 2017 3 / 17

  5. Bulk-edge correspondence: rigorous results • Halperin ’82. Hall phases come with robust edge currents. • Hatsugai ’93; Schulz-Baldes et al ’00, Graf et al. ’02: bulk-edge duality. σ 12 = e 2 � ω e ω e = (chirality of the edge state) ∈ {− 1 , +1 } h e Figure: ( a ) : σ 12 = e 2 ( b ) : σ 12 = − e 2 h , h , ( c ) : σ 12 = 0. • Graf-P. ’13: extension to quantum spin Hall systems. Marcello Porta Edge transport July 6, 2017 4 / 17

  6. Bulk-edge correspondence: rigorous results • Halperin ’82. Hall phases come with robust edge currents. • Hatsugai ’93; Schulz-Baldes et al ’00, Graf et al. ’02: bulk-edge duality. σ 12 = e 2 � ω e ω e = (chirality of the edge state) ∈ {− 1 , +1 } h e Figure: ( a ) : σ 12 = e 2 ( b ) : σ 12 = − e 2 h , h , ( c ) : σ 12 = 0. • Graf-P. ’13: extension to quantum spin Hall systems. • Many-body interactions? Marcello Porta Edge transport July 6, 2017 4 / 17

  7. Interacting systems Interacting systems Marcello Porta Edge transport July 6, 2017 4 / 17

  8. Interacting systems Lattice fermions • Interacting electron gas on Λ L = [0 , L ] 2 ⊂ Z 2 . Fock space Hamiltonian: � � � � a + y ) a − H = x,ρ H ρρ ′ ( � x, � x,ρ ′ + λ n � x,ρ v ρρ ′ ( � x, � y ) n � y,ρ ′ − µ N � � ρ,ρ ′ ρ,ρ ′ � x,� y � x,� y H, v finite-ranged, ρ ∈ { 1 , . . . , M } = internal degree of freedom. • H is equipped with cylindric boundary conditions: (0 , L ) ( L, L ) (0 , 0) ( L, 0) Figure: Dotted lines: Dirichlet boundary conditions. • Translation invariance in x 1 direction: H ρρ ′ ( � y ) ≡ H ρρ ′ ( x 1 − y 1 ; x 2 , y 2 ). x, � Marcello Porta Edge transport July 6, 2017 5 / 17

  9. Interacting systems Lattice fermions • Interacting electron gas on Λ L = [0 , L ] 2 ⊂ Z 2 . Fock space Hamiltonian: � � � � a + y ) a − y,ρ ′ − µ N H = x,ρ H ρρ ′ ( � x, � x,ρ ′ + λ n � x,ρ v ρρ ′ ( � x, � y ) n � � � � x,� y ρ,ρ ′ � x,� y ρ,ρ ′ H, v finite-ranged, ρ ∈ { 1 , . . . , M } = internal degree of freedom. • Assumption. For periodic b.c., σ ( H (per) ) is gapped. Instead, edge states might appear in σ ( H ). • ε ( k 1 ) = eigenvalue branch of ˆ H ( k 1 ). The corresponding edge state is: with ξ x 2 ( k 1 ) ∼ e − cx 2 . x ( k 1 ) = e ik 1 x 1 ξ x 2 ( k 1 ) , ϕ � ˆ Marcello Porta Edge transport July 6, 2017 5 / 17

  10. Interacting systems Edge transport coefficients • Let µ ∈ σ ( H (per) ). • Edge transport. Perturb at distance ≤ a from x 2 = 0. Linear response? ( L, L ) (0 , L ) (0 , a ′ ) (0 , a ) (0 , 0) ( L, 0) • Interesting physical observables: charge density and current density, � � � a + x,ρ a − � e i [ ia + x ) a − n � x = x,ρ , j � x = � e i ,ρ H ρρ ′ ( � x + � e i , � x,ρ ′ +h.c.] . � � � x + � � ρ i =1 , 2 ρ,ρ ′ Their support will be x 2 ≤ a ′ , with L ≫ a ′ ≫ a ≫ 1. Marcello Porta Edge transport July 6, 2017 6 / 17

  11. Interacting systems Edge transport coefficients • Let µ ∈ σ ( H (per) ). • Edge transport. Perturb at distance ≤ a from x 2 = 0. Linear response? • Edge charge susceptibility: � 0 dt e tη � κ a,a ′ ( η, p 1 ) n ≤ a ′ n ≤ a � [ˆ � − p 1 ] � � � ∞ = i p 1 ( t ) , ˆ −∞ p 1 = � n ≤ a � ∞ = lim β,L →∞ L − 1 Tr · e − β ( H− µ N ) / Z β,L . � � ˆ x 2 ≤ a ˆ n p 1 ,x 2 , � · � � Marcello Porta Edge transport July 6, 2017 6 / 17

  12. Interacting systems Edge transport coefficients • Let µ ∈ σ ( H (per) ). • Edge transport. Perturb at distance ≤ a from x 2 = 0. Linear response? • Edge charge susceptibility: � 0 dt e tη � κ a,a ′ ( η, p 1 ) n ≤ a ′ n ≤ a � � [ˆ − p 1 ] � � ∞ � = i p 1 ( t ) , ˆ −∞ p 1 = � n ≤ a � ∞ = lim β,L →∞ L − 1 Tr · e − β ( H− µ N ) / Z β,L . � � ˆ x 2 ≤ a ˆ n p 1 ,x 2 , � � · � • Charge conductance and Drude weight: � 0 dt e tη � j ≤ a ′ G a,a ′ ( η, p 1 ) n ≤ a p 1 ( t ) , ˆ = i � � [ˆ 1 , − p 1 ] � � � ∞ −∞ � � 0 � ∞ + ∆ a � dt e tη � D a,a ′ ( η, p 1 ) j ≤ a j ≤ a ′ � [ˆ 1 ,p 1 ( t ) , ˆ � � = − i 1 , − p 1 ] � −∞ with ∆ a = � � [ X ≤ a j ≤ a 1 , ˆ � � 1 , 0 ] � � ∞ . Spin transport: n → n ↑ − n ↓ , j → j ↑ − j ↓ . Marcello Porta Edge transport July 6, 2017 6 / 17

  13. Interacting systems Bulk transport coefficients • The response to bulk perturbations is expected to be edge-independent. • Kubo formula: bulk conductivity matrix. � � 0 � i dt e ηt � � (per) � (per) σ ij = lim � [ j i ( t ) , j j ] � � � + � � � [ X i , j j ] � � ∞ ∞ η η → 0 + −∞ j = � � x � � (per) = lim β,L →∞ L − 2 Tr · e − β ( H (per) − µ N ) / Z (per) � � � · � � j � x , ∞ � β,L • Bachmann-de Roeck-Fraas ’17, Monaco-Teufel ’17: derivation of Kubo formula for gapped many-body lattice models. • Hastings-Michalakis ’14, Giuliani-Mastropietro-P. ’15: quantization of σ 12 for λ � = 0. [HM]: gapped H . [GMP]: λ ≪ gap( H ). • Giuliani-Jauslin-Mastropietro-P. ’16: Hall transitions in the Haldane-Hubbard model: λ ≫ gap( H ). Marcello Porta Edge transport July 6, 2017 7 / 17

  14. Interacting systems Noninteracting edge transport • Let λ = 0. Define p = ( η, p 1 ). Edge transport coefficients: ω e p 1 � κ a,a ′ ( p ) + R a,a ′ = ( p ) (susceptivity) κ 2 π − iη + v e p 1 e ω e − iη � + R a,a ′ G a,a ′ ( p ) = ( p ) (conductance) G 2 π − iη + v e p 1 e | v e | − iη � D a,a ′ ( p ) + R a,a ′ = D ( p ) (Drude weight) − iη + v e p 1 2 π e v e = velocity of edge state, ω e = sgn( v e ), lim a,a ′ →∞ lim p → 0 R a,a ′ ( p ) = 0. ♯ • Bulk-edge correspondence: ω e � p 1 → 0 G a,a ′ ( η, p 1 ) G = a,a ′ →∞ lim lim η → 0 + lim = 2 π e = σ 12 Marcello Porta Edge transport July 6, 2017 8 / 17

  15. Interacting systems Interacting edge transport: Bosonization • Edge transport coefficients ∼ correlations of ∂ x 0 φ e , ∂ x 1 φ e , with φ e = bosonic free field with covariance [Wen, ’90]: − p � = δ ee ′ ω e 1 � ˆ p ˆ φ e ′ − φ e + p 1 ( − iη + v e p 1 ) . 2 π • Bosonization. Mapping of interacting, relativistic fermions in free bosons with interaction-dependent parameters: “ n e → ∂ x 1 φ e ”. • The mapping in free bosons breaks down for nonrelativistic models. Nonlinearities produce quartic interactions among bosons. • Exact computation of the transport coefficients for λ � = 0? • From now on: one edge state per edge (spin degenerate). Marcello Porta Edge transport July 6, 2017 9 / 17

  16. Interacting systems Reference model: Chiral Luttinger liquid • Chiral Luttinger liquid. Massless 1 + 1-dim. Grassmann field: � dk S (ref) (2 π ) 2 ψ + k,σ ( − ik 0 + vk 1 ) ψ − ( ψ ) = Z k,σ . 0 R 2 Noninteracting density-density correlation function: − ip 0 − vp 1 1 � (ref) = − � � � ˆ n p ; ˆ n − p � � . 2 π | v | Z 2 − ip 0 + vp 1 • Expect. Lattice edge states effectively described by interacting χLL : � � dp dk S (ref) ( ψ ) = Z (2 π ) 2 ψ + k,σ ( − ik 0 + vk 1 ) ψ − k,σ + gZ 2 (2 π ) 2 ˆ w ( p )ˆ n p ˆ n − p R 2 R 2 for suitable bare parameters Z , v , g (and suitable regularization scheme). Marcello Porta Edge transport July 6, 2017 10 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend