unification observable landscapes and new particles at
play

UNIFICATION, OBSERVABLE LANDSCAPES AND NEW PARTICLES AT THE LHC - PowerPoint PPT Presentation

UNIFICATION, OBSERVABLE LANDSCAPES AND NEW PARTICLES AT THE LHC Raffaele Tito DAgnolo - IAS Princeton A First Glance Beyond the Energy Frontier 9/9/2016-ICTP THE MOST EXCITING LHC RESULT THE HIGGS IS LIGHT AND THERE IS NOTHING


  1. UNIFICATION, OBSERVABLE LANDSCAPES AND NEW PARTICLES AT THE LHC Raffaele Tito D’Agnolo - IAS Princeton A First Glance Beyond the Energy Frontier 9/9/2016-ICTP

  2. THE MOST EXCITING LHC RESULT THE HIGGS IS LIGHT AND � THERE IS NOTHING RELATED TO NATURALNESS 2

  3. THE MOST EXCITING LHC RESULT 1. IS IT REASONABLE TO EXPECT NEW PARTICLES AT THE LHC? 2. WHAT ABOUT THE HIGGS MASS? 3

  4. SOME PERSPECTIVE 1935 Never π µ vs 1947 1936 4

  5. SOME PERSPECTIVE 3000 ��������� 2-3 orders ��������� 2500 _ ˜ � �� ˜ � � ( GeV ) � of magnitude � � = �� ��� in 2000 m g σ 1500 1000 10 - 1 10 2 10 3 1 10 L ( fb - 1 ) 5

  6. SOME PERSPECTIVE √ s = 13 TeV < 10% 6

  7. UNIFICATION N. Arkani-Hamed, RTD, M. Low, D. Pinner � 1608.01675

  8. EXPERIMENTAL HINTS PROTON AND GAUGE COUPLING ELECTRON CHARGE UNIFICATION 8

  9. EXPERIMENTAL HINTS PROTON AND GAUGE COUPLING ELECTRON CHARGE UNIFICATION NULL INDIRECT VECTOR-LIKE RESULTS (EWPTS,…) PARTICLES 9

  10. MATTER CONTENT • (PERTURBATIVE) GAUGE COUPLING UNIFICATION • VECTOR-LIKE FERMIONS . 4 × ( 5 + ¯ 5 ) AT THE WEAK SCALE . ( 5 + ¯ � � 5 ) + 10 + 10 10

  11. MATTER CONTENT WEAKLY COUPLED 5 = ( D, L c ) 10 = ( Q c , E, U c ) NO REASON TO BE WELL KNOWN NEAR THE PHENOMENOLOGY WEAK SCALE 11

  12. VECTOR-LIKE CONFINEMENT SM 5 + ¯ 5 FERMIONS SM FORCES G H LEPTONS QUARKS γ COLOR 12

  13. CONFINING GROUPS G H N.B. Only their fundamental representations are asymptotically free ( ) N F ≥ 5 13

  14. CONFINING GROUPS Example 3 × ( 5 + ¯ 5 ) N F = 5 14

  15. CONFORMAL WINDOW ONE MORE INGREDIENT: SUSY IN THE UV ALL(*) OUR THEORIES ARE IN THE CONFORMAL WINDOW 3 N c / 2 < N F < 3 N c SU(N c ) 3( N c + 1) / 2 < N F < 3( N c + 1) Sp(N c ) (*) SU(4) N F ≥ 7 15

  16. CONFORMAL WINDOW Λ ∼ TeV − 100 TeV 16

  17. SIGNALS

  18. CHIRAL SYMMETRY SU ( N F ) × SU ( N F ) SU(3) H , SU(4) H SU ( N F ) N F ≥ 5 SU (2 N F ) SU(2) H , Sp(4) H Sp (2 N F ) 18

  19. PIONS 24 + ∆ ( 5 + 5 ) SU(3) H , SU(4) H + ∆ 2 1 ∆ = N F − 5 24 + 10 + 10 SU(2) H , Sp(4) H + 2 ∆ ( 5 + 5 ) + ∆ (2 ∆ − 1) 1 19

  20. PIONS EXAMPLE: of SU(5) 24 20

  21. INTERACTIONS REAL COMPLEX 21

  22. MASSES SIMPLEST SCENARIO: ONLY SM GAUGE INTERACTIONS BREAK THE FLAVOR SYMMETRY EXPLICITLY m 2 ∼ ( α s / 4 π ) Λ 2 m 2 ∼ ( α w / 4 π ) Λ 2 m ∼ 50 keV m 2 ∼ ( α s / 4 π ) Λ 2 22

  23. SUMMARY WEAK SCALE MASSES NEARLY MASSLESS π 8 π 1 Q X π 3 PROMPT DECAYS COLORED STABLE TO VV A HANDFUL OF PARAMETERS DETERMINES ALL THEIR PHENOMENOLOGY 23

  24. SUMMARY, PART II DIJETS,MULTIJETS, m ∼ TeV COLORED SQUARKS, σ ∼ 0 . 1 pb LEPTOQUARKS EW CHARGED m ∼ 400 GeV MULTI-W,Z, , γ SLEPTONS σ ∼ few fb SN1987A, f a ∼ TeV ALPs, LIGHT BEAM DUMPS, HIGGSES s θ . 1% LHCb, Belle, … 24

  25. POSSIBLE DEDICATED SEARCHES • SPECTACULAR CASCADES [ jl + ( l − ¯ ν )][ jl − ( l + ν )] � • jZ RESONANCES ( jZ ) , ( jZ )( jj ) , ( jZ )( j γ ) � • FOUR WEAK GAUGE BOSONS • EXOTIC LEPTOQUARKS tl, τ j 25

  26. N. Arkani-Hamed, RTD, A.Hook, H.D. Kim,M. Low � Very Preliminary LOW ENERGY LANDSCAPES

  27. IDEAL OUTCOME MAKE THE HIGGS LIGHT BY TUNING ONLY Λ 27

  28. BONUS SIGNALS OF LOW ENERGY LANDSCAPES 28

  29. SETUP • WE IMAGINE THAT ANTHROPIC TUNING OR SUSY BRINGS THE CC DOWN TO SOME INTERMEDIATE (meV) 4 ⌧ Λ ∗ ⌧ M 4 VALUE P l 29

  30. SETUP • WE IMAGINE THAT ANTHROPIC TUNING OR SUSY BRINGS THE CC DOWN TO SOME INTERMEDIATE (meV) 4 ⌧ Λ ∗ ⌧ M 4 VALUE P l • AT LOW ENERGY WE INCLUDE ADDITIONAL 2 N DEGENERATE VACUA φ 2 φ 4 V ⊃ − m 2 X X i i 2 + λ 4 i i N.B. h φ i i ⇠ M P l 30

  31. SETUP • WE IMAGINE THAT ANTHROPIC TUNING OR SUSY BRINGS THE CC DOWN TO SOME INTERMEDIATE (meV) 4 ⌧ Λ ∗ ⌧ M 4 VALUE P l • AT LOW ENERGY WE INCLUDE ADDITIONAL 2 N DEGENERATE VACUA φ 2 φ 4 V ⊃ − m 2 X X i i 2 + λ � 4 i i • THE HIGGS VEV BREAKS THE DEGENERACY X V ⊃ mH 1 H 2 ✏ i � i i 31

  32. BOUNDS ON THE HIGGS VEV ∗ . mM P l h H 1 H 2 i ⌘ v 2 ✏ 32

  33. BOUNDS ON THE HIGGS VEV ∆ V & Λ ∗ Λ ∗ v 2 ∗ & ✏ mM P l 33

  34. THE WEAK SCALE Λ ∗ ∗ . mM P l . v 2 ✏ mM P l ✏ Λ ∗ ∼ v 4 , m ∼ v 2 /M P l , FOR SIMPLICITY AT THE MOMENT v ∗ ∼ v I AM TAKING ✏ = O (1) 34

  35. PHENOMENOLOGY N ∼ 6 log[ v 4 / (meV) 4 ] ∼ 10 2 SCALARS v 2 ∼ (few cm) − 1 m ∼ MEDIATING M P l LONG RANGE FORCES L ⊃ m ψ X ¯ WEAKER THAN GRAVITY ✏ i � i M P l i 35

  36. SOME WIGGLE ROOM √ ✏ ∼ 1 / N Λ ∗ ∗ . mM P l . v 2 ✏ mM P l ✏ Λ ∗ ∼ ✏ 2 v 4 m ∼ ✏ × (cm) − 1 m ∼ ✏ v 2 v ∗ ∼ v G N × ✏ M P l 36

  37. SOME WIGGLE ROOM √ ✏ ∼ 1 / N Λ ∗ ∗ . mM P l . v 2 ✏ mM P l ✏ Λ ∗ ∼ v 4 m ∼ ( ✏ × cm) − 1 v 2 . v 2 ∗ . v 2 / ✏ 2 v 2 G N × ✏ m ∼ ✏ M P l 37

  38. SUPERSYMMETRIC CASE X φ 3 W ⊃ µH u H d + κ i i X X φ 3 W ⊃ λ φ i H u H d + κ i i i ... h φ i i ⇠ TeV SAME IDEA, BUT THIS TIME IS NATURAL 38

  39. PHENOMENOLOGY NEW HIGGS-LIKE PARTICLES AT THE LHC φ CASCADES φ H φ HIGGS COUPLING DEVIATIONS 39

  40. CONCLUSION • SURPRISINGLY LEP AND LHC HAVE NOT YET UNVEILED THE SOLUTION TO THE HIERARCHY PROBLEM • NONETHELESS THE LHC HAS STILL A HUGE PHYSICS POTENTIAL • AND THERE ARE MANY OTHER REASONS TO EXPECT NEW PARTICLES OTHER THAN NATURALNESS, SOME OF WHICH UNEXPECTED: • LOW ENERGY LANDSCAPES • UNIFICATION + IR FIXED POINTS 40

  41. BACKUP

  42. CONSTRAINTS M = M D = 2 M L 7 collider stable E g r = 4 p Q Y Q Y * Æ j m j m 2 6 collider stable Q X 5 L H TeV L E + E - Æ { + { - nn 4 Q Y Q Y * Æ b t b t 3 p 8 Æ jj p 8 p 8 Æ 4 j 2 r 8 Æ jj 1 0.1 1 10 100 M H GeV L 42

  43. REAL PIONS BRs gg gg gg 1 W g ZZ gg WZ Z g 10 - 1 branching ratio WW WW ZZ g g ZZ 10 - 2 Z g gg gg gZ Z g 10 - 3 p 30 p 3 ± p ' p 1 p 8 43

  44. “STABLE” PIONS M ∗ SM 5 + ¯ 5 FERMIONS SM FORCES G H W, Z LEPTONS MESONS γ COLOR 44

  45. “STABLE” PIONS f � µ d c @ µ Q X ` ¯ M 2 ∗ ◆ 2 ✓ 3 TeV ◆ 2 ✓ ◆ 4 ✓ (1 GeV) 2 ✓ 0 . 1 ◆ ✓ 1 TeV ◆ M ∗ τ ' 0 . 1 mm a + m 2 10 TeV m 2 Λ c i M π b Λ f Q X d c ˜ H u M 2 ∗ ◆ 2 ✓ 3 TeV ◆ 4 ✓ ◆ 4 ✓ 1 TeV ✓ 0 . 1 ◆ M ∗ τ ' 10 − 11 m Λ c i 10 TeV M π 45

  46. FLAVOR W ⊃ M Φ ΦΦ c + � L,i Φ c L c ` i + � D,i Φ c Dd c i + M L LL c + M D DD c ◆ 2 ✓ λ D,s λ ∗ λ L,e λ ∗ L,µ e m µ σ µ s c ) 2 + D,d ( ¯ d c ¯ ( µ c σ µ ν e L ) F µ ν + ... L ⊃ M 2 4 π M Φ 16 π 2 Φ K − ¯ K µ → e γ < ( M Φ / ( λ D,s λ ∗ D,d )) & 80 TeV M 2 L,µ ) & (60 TeV) 2 Φ / ( λ L,e λ ∗ D,d )) & 1 . 3 ⇥ 10 3 TeV = ( M Φ / ( λ D,s λ ∗ 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend