unidirectional phenomena in optic acoustic pt materials
play

Unidirectional Phenomena in Optic/Acoustic PT Materials 1 2 3 - PowerPoint PPT Presentation

Unidirectional Phenomena in Optic/Acoustic PT Materials 1 2 3 Xue-Feng Zhu, Jie Zhu & Xiang Zhang 1. Huazhong University of Science and Technology 2. The Hong Kong Polytechnic University 3. University of California at Berkeley


  1. Unidirectional Phenomena in Optic/Acoustic PT Materials 1 2 3 Xue-Feng Zhu, Jie Zhu & Xiang Zhang 1. Huazhong University of Science and Technology 2. The Hong Kong Polytechnic University 3. University of California at Berkeley

  2. Engineering Photonics using Lithography  Engineering photonics in a real ε -µ plane 500nm Photonic waveguides µ ~ λ (~ 500 nm for Si at 1550 nm) Metals Conventional (gold, silver) dielectrics (silicon) Photonic crystals ~ λ /2 ε<0 µ>0 ε>0 µ>0 (~ 300-500 nm for Si at 1550 nm) ε Magnets Metamaterials Plasmonics ~ λ /10 ε>0 µ<0 (<50 nm for visible light) ε<0 µ<0 (not in optical frequencies) Metamaterials ~ λ /5 (<100 nm for visible light) Demand nanofabrication to engineer photonics!

  3. Photonics is More Than Real   Photonics in a real ε -µ plane What is missing? µ ε '' Metals Conventional Gain Medium (gold, silver) dielectrics (silicon) ε '<0 ε ''>0 ε'>0 ε ''>0 ε<0 µ>0 ε>0 µ>0 ε ε ' Magnets Metamaterials Lossy Metals Lossy Dielectrics ε>0 µ<0 ε<0 µ<0 ε'<0 ε ''<0 ε'>0 ε ''<0 (not in optical frequencies) Engineering nanophotonics in a complex dielectric permittivity plane!

  4. Parity-time (PT) Symmetry in Optics Electron Photon Time-dependent Schrodinger equation Paraxial equation of diffraction ∂ 2 −  − ∂ ∂ 2 2 k E Ψ + ∇ Ψ − Ψ = 2  + + + = ( , ) ( , ) ( , ) ( , ) 0 i r t r t V r t r t 1 0 [ ( ) ( )] 0 ik E n x in x E ∂ 2 ∂ ∂ t m 0 2 R I 2( / ) z k k x 0 Hamiltonian in quantum mechanics ˆ = + + 2 ˆ ˆ ˆ / 2 ( ) ( ) H p m V x iV x R I Parity-time symmetry in quantum mechanics ˆ ˆ → = symmetry PT PTH HPT Parity-time optical potentials Parity-time potentials in quantum mechanics → = − symmetry ( ) ( ) PT n x n x R R → = − ˆ ˆ symmetry ( ) ( ) PT V x V x = − − ( ) ( ) n x n x R R I I = − − ˆ ˆ ( ) ( ) e.g. n =const.+exp( i β x ) V x V x I I → − → − Parity and Time Operators ˆ ˆ ˆ ˆ : , P p p x x → − → → − ˆ ˆ ˆ ˆ : , , T p p x x i i C. E. Ruter et al., Nature Phys. 6, 192 (2010)

  5. Non-Hermitian Optics Engineering material index from real to complex: PT symmetry in optics Index modulation non-Hermitian Hermitian from real to complex ε = 2 n PT-optical modulation along light propagation ε ε " ' x ε = ε + ξ β + δξ β ( ) cos( ) sin( ) x x i x 0 Unidirectional invisibility ( δ =1) δ = = = 1: 1, 0 T R L Z. Lin et al., Phys. Rev. Lett. 106, 213901 (2011)

  6. Unidirectional Reflection at δ =1  The PT optical modulation becomes ∆ ε = ξ exp( i β x ) Fourier space: Introducing a unidirectional wave vector of β  Unidirectional Bragg reflection k k 1 1 k β β 2 k 1 δ k k k 2 1 2 Phase mismatch: δ = β + k 1 - k 2 ≠ 0 Phase match: δ = β + k 1 - k 2 =0 (Reflection) (Reflectionless)

  7. Design of One-way Invisible Cloak To Combine Transformation Optics with Non-Hermitian Optics: Coordinate mapping in TO Add PT-optical modulation into virtual space ε =1+ ξ exp( i β x ), µ = 1 r = f ( r' ) = b ( r'-a )/( b-a ) θ = θ ' ε =1, µ = 1 ε ' = A ε A ε ' = f ( r' ) f' ( r' ) ε / r' T /detA For TE light µ ' r' = f ( r' ) µ /[ r'f' ( r' )] µ ' = A µ A T /detA µ ' θ ' = f' ( r' ) r' µ / f ( r' ) A ij = h i ' ∂ x i ' / h i ∂x i X. Zhu et al., Opt. Lett., 38, 15, 2821(2013) X. Zhu et al., Phys. Rev. Lett. 106, 014301 (2011)

  8. One-way Cloak for Plane Waves Strong reflection No reflection PT cloak PT cloak object object For plane waves from the left Unidirectional light reflection (backward) Phase match: δ = β + k 1 - k 2 =0 ω ξ 2 dE dE = , in =0 sc i E 2 in 2 dx dx k c 2 (reflecting) For plane waves from the right Phase mismatch: δ = β + k 1 - k 2 ≠ 0 dE dE dx = , in sc =0 0 dx (no reflecting)

  9. One-way Cloak with Forward Reflection Unidirectional light reflection (forward) For plane waves from the left Phase match: δ = β + k 1 - k 2 =0 (reflecting) For plane waves from the right Phase mismatch: δ = β + k 1 - k 2 ≠ 0 (no reflecting) ≠ k k due to reciprocity Note: 1 2

  10. PT Symmetry in Acoustics The analogy between acoustic equations and Maxwell equations ∂ − ∂ 1 ( ) 1 E p − ωµ − = − − ωρ υ = − z ( ) , , i H i θ θ ∂ θ ∂ θ r r r r ∂ − ∂ ( ) , E p − ωµ = − − ωρ υ = − ∂ z , i H i θ θ ∂ r r r r ∂ ∂ − ∂ υ ∂ υ 1 ( ) 1 ( ) 1 ( ) 1 rH H r − ωε − = − − − ωκ − = − − θ θ 1 r r ( ) i E i p ∂ ∂ θ ∂ ∂ θ z z r r r r r r κ − − υ − υ ρ ρ 1 [ ] p θ θ r r − − µ µ ε − 1 [ ] E H H θ θ z r r z H. Chen and C. T. Chan, J. Phys. D: Appl. Phys. 43, 113001 (2010)

  11. PT Symmetry in Acoustics Unidirectional sound reflection Unidirectional acoustic carpet cloaking Exceptional Point: λ = λ = 2 or 1 T − = * 1 1 ( ) ( ) S k S k PT Symmetry   t r λ = ± − [1 (1 ) / ] t i T T =  R ( )  S k 1,2   r t L X. Zhu et al., Phys. Rev. X 4, 031042 (2014)

  12. Other Unidirectional Phenomena in PT Materials 1. Bidirectional transparency and one-way light enhancement 2. Bifurcated Fabry-Pèrot resonances with unidirectional field enhancement

  13. Bidirectional Transparency in PT Materials ∆ << ( ) n n 0 + ∆ − ∆ − ∆ − ∆ + ∆ + ∆ − ∆ + ∆ n n i n n n i n n n i n n n i n 0 0 0 0 λ = At the Bragg’s condition 2 n L 0 ∗ ∗ + − + + − + ( ) ( ) , ( ) ( ) , M M n n M M n M M n n M M n = = 11 12 0 0 21 22 0 11 12 0 0 21 22 0 r r + + + + ∗ + ∗ + L R ( ) ( ) ( ) ( ) M M n n M M n M M n n M M n 11 12 0 0 21 22 0 11 12 0 0 21 22 0 2 n = 0 . t + + + ( ) ( ) M M n n M M n 11 12 0 0 21 22 0 X. Zhu et al., Opt. Express, 22, 18401 (2014)

  14. For the coefficients ( ) ( ) ( ) ( )( ) − π − − π sin 1 / sin 1 1 / N P P N P P = − M m 11 11 π π / / P P ( ) ( ) ( ) ( ) − π − π sin 1 / N P P sin 1 / N P P = = M m M m π 12 12 π / 21 21 P / P ( ) ( ) ( ) ( )( ) − π − − π sin 1 / sin 1 1 / N P p N P p = − M m π π 22 22 / / p p Transfer matrix of one unit-cell   i −   cos( ) sin( ) k n L k n L   4 m m ∏ 0 0 j j j j = 11 12 n     j   m m   = − 1 21 22 j sin( ) cos( ) in k n L k n L   0 0 j j j j j 2   11 n = 0   P The coefficient ∆   9 n = = = → = = , 1, , 0 0, 1 M M M M r t N mP When We obtain 11 22 12 21 ( ) L R m = ⋅⋅⋅⋅⋅⋅ = = 1,2,3, or 0, 1 R T ( ) L R

  15. One Numerical Example n 0 =3, ∆ n =0.2, λ =1200 nm, L = λ /(2 n 0 )=200 nm 2 2     11 11 3 n = = = 0     275 P ∆     9 9 0.2 n

  16. One-way Light Enhancement N = 275

  17. Bifurcated Fabry-Pèrot Resonances = = = = → = 1, 0 0, =1 M M M M r t 11 22 12 21 ( ) L R FP Resonances = = = = − = = → = − 0, 1 R T 1, 0 0, = 1 M M M M r t 11 22 12 21 ( ) L R ( ) L R

  18. One-way Light Enhancement

  19. Summary   t r =  R ( )  PT Optic/Acoustic System : S k   r t L Z. Lin et al., Phys. Rev. Lett. 106, 213901 (2011) L. Feng et al., Nat. Mater. 12, 108(2013) …… = ≠  0, 0 R R X. Zhu et al., Opt. Lett., 38, 15, 2821(2013) L R  X. Zhu et al., Phys. Rev. X 4, 031042 (2014) X. Zhu et al., Opt. Express, 23, 022274 (2015)   = =  0, 0 R R X. Zhu et al., Opt. Express, 22, 18401 (2014) = − = → 1 L R T | 1| T R R L R   = = ∞ H. Ramezani et al., Phys. Rev. Lett. 113, 263905 0, R R  (2014) L R  

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend