uncovering latent jet substructure
play

Uncovering latent jet substructure Barry M . Dillon Jozef Stefan - PowerPoint PPT Presentation

Uncovering latent jet substructure Barry M . Dillon Jozef Stefan Institute , Ljubljana , Slovenia Based on: hep - ph/ 1904.04200 BMD , Darius A . Faroughy , Jernej F . Kamenik Dark Machines , Trieste , April 11 th 2019 Overview Goal:


  1. Uncovering latent jet substructure Barry M . Dillon Jozef Stefan Institute , Ljubljana , Slovenia Based on: hep - ph/ 1904.04200 
 BMD , Darius A . Faroughy , Jernej F . Kamenik Dark Machines , Trieste , April 11 th 2019

  2. Overview • Goal: 
 Build an unsupervised ML tagger that can be used in new physics searches at colliders • How? 
 Latent Dirichlet Allocation (LDA) See talks: 
 ‘Probabilistic programming’: 
 Rajat Mani Thomas 
 ‘Probabilistic Programming and Inference in Particle Physics’: 
 Atılım Güne ş Baydin • Why? 
 Model independence , data - driven , anomaly detection , 
 you can see what the machine learned

  3. 
 
 
 
 
 
 
 
 
 
 Jets and substructure Events at colliders produce collimated bunch of hadrons initiated by some underlaying event: π + π − hadronization hadrons are K + clustered into coloured 
 composite seed particle objects , called jets a jet is defined by the algorithm you 
 π 0 used to cluster the particles

  4. Jets and substructure Taken from: 
 M . Cacciari , G . P . Salam , G . Soyez ( 2008 ) d ij = ∆ R 2 Cambridge ij R 2 , d iB = 1 - Aachen 1 - compute for each particle in the final state 
 d ij 2 - if the minimum is declare particle a jet , and remove it from the list 
 d iB i 3 - if the minimum is combine particles and and go back to step 1 
 d ij i j 4 - repeat until there are no particles le fu

  5. Jets and substructure What was the initial process that led to the jet production? subjet π + π − hadronization K + jet π 0

  6. 
 Jets and substructure What was the initial process that led to the jet production? π + study the clustering π − history of the hadronization jet 
 K + the clustering history contains information on how the jet Jet substructure J . M . Butterworth , A . R . Davison , M . formed Rubin , G . P . Salam Un - cluster the jet by ( 2008 ) opening subjets one by one π 0 j 0 → j 1 j 2 , m j 1 > m j 2

  7. 
 Jets and substructure Useful substructure observables: min( p 2 T, 1 , p 2 T, 2 ) m j 0 , m j 1 , m j 2 n o ∆ R 2 o j 0 = , , 1 , 2 m 2 m j 0 m j 1 j 0 π + study the subjet mass clustering π − mass drop history of the hadronization jet 
 K + the clustering history contains information on how the jet Jet substructure J . M . Butterworth , A . R . Davison , M . formed Rubin , G . P . Salam Un - cluster the jet by ( 2008 ) opening subjets one by one π 0 j 0 → j 1 j 2 , m j 1 > m j 2

  8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Top tagging Top tagging: ‘was this jet seeded by a top - quark or not?’ Features: 
 subjet mass 
 t ¯ Signal : top jets from production in the SM 
 t m j 0 ∼ m t (175GeV) pp → t ¯ ( t → W + b ) m j 0 ∼ m W (80GeV) t → jj, mass drop m j 1 ∼ m W Features: 
 ∼ 0 . 45 subjet mass 
 m j 0 m t Background : QCD di - jets 
 smoothly decaying distribution , peaked at zero 
 mass drop 
 pp → gg → jj smoothly decaying distribution , peaked at one D . E . Kaplan , K . Tagging tops manually (e . g . the Johns - Hopkins (JH) top - tagger) Rehermann , M . D . Schwartz and B . 1 - cluster with C/A and then uncluster 
 Tweedie ( 2008 ) 
 2 - cuts are applied manually to filter out jets which have top - like features

  9. 
 
 
 
 
 
 
 
 
 
 
 
 
 Latent Dirichlet Allocation D . M . Blei , A . Y . Ng , M . I . Jordan , J . La ff erty ( 2003 ) Characterising documents as a set of ‘topics’ or ‘themes’ LDA is based on a generative process for writing documents 
 Assumptions: 
 short distance physics is represented by a set of ‘themes’ 
 A ‘theme’ is a distribution over substructure features 
 a jet , or event , is represented by a list (document) of features 
 each jet , or event , can have di ff erent proportions of each theme A mixed sample of jets or events can be parameterised by a set of ‘latent’ hyper - parameters: # themes (finite) theme concentration parameters 
 α i i = 1 , . . . , K β ij theme - feature matrix # features j = 1 , . . . , N f

  10. Latent Dirichlet Allocation D . M . Blei , A . Y . Ng , M . I . Jordan , J . La ff erty ( 2003 ) The LDA process for generating jets or events: theme - feature matrix 
 β Dir( α ) theme concentration parameters

  11. Latent Dirichlet Allocation D . M . Blei , A . Y . Ng , M . I . Jordan , J . La ff erty ( 2003 ) The LDA process for generating jets or events: the Dirichlet is a simplex from which β we will draw the theme proportions for each document it is a prior that allows us to increase the probability of certain theme proportions to be selected Dir( α )

  12. Latent Dirichlet Allocation D . M . Blei , A . Y . Ng , M . I . Jordan , J . La ff erty ( 2003 ) The LDA process for generating jets or events: from the Dirichlet , we draw the theme β proportions for a single jet or event Dir( α ) ω jet , or event

  13. Latent Dirichlet Allocation D . M . Blei , A . Y . Ng , M . I . Jordan , J . La ff erty ( 2003 ) The LDA process for generating jets or events: to choose a feature for the jet or β event , we first draw a theme from the theme proportions Dir( α ) t ω feature jet , or event

  14. Latent Dirichlet Allocation D . M . Blei , A . Y . Ng , M . I . Jordan , J . La ff erty ( 2003 ) The LDA process for generating jets or events: given the theme and the theme - β feature matrix , a feature is chosen and added to the jet or event Dir( α ) feature t ω feature jet , or event

  15. Latent Dirichlet Allocation D . M . Blei , A . Y . Ng , M . I . Jordan , J . La ff erty ( 2003 ) The LDA process for generating jets or events: this process is repeated for each β feature , and each jet or event , to be generated Dir( α ) feature t ω n f = 1 , . . . , N f feature n j,e = 1 , . . . , N j,e jet , or event

  16. 
 
 
 
 
 
 
 
 
 
 
 Latent Dirichlet Allocation D . M . Blei , A . Y . Ng , M . I . Jordan , J . La ff erty ( 2003 ) The probability of a jet being generated , given the choice of latent parameters , is 
 X ! Z Y p ( j | α , β ) = p ( ω | α ) p ( t | ω ) p ( f | t, β ) ω t f ∈ j The goal: 
 to infer the latent parameters in the theme - feature matrix , by analysing a collection of documents 
 How? 
 Variational Bayesian methods , implemented using the gensim so fu ware R . Rehurek , P . Sojka ( 2010 ) 
 M . D . Ho ff man , D . M . Blei , F . Bach ( 2010 )

  17. 
 
 
 
 
 
 
 
 
 
 
 Latent Dirichlet Allocation D . M . Blei , A . Y . Ng , M . I . Jordan , J . La ff erty ( 2003 ) The probability of a jet being generated , given the choice of latent parameters , is 
 X ! Z Y p ( j | α , β ) = p ( ω | α ) p ( t | ω ) p ( f | t, β ) ω t f ∈ j The goal: 
 to infer the latent parameters in the theme - feature matrix , by analysing a collection of documents 
 How? 
 Variational Bayesian methods , implemented using the gensim so fu ware R . Rehurek , P . Sojka ( 2010 ) 
 M . D . Ho ff man , D . M . Blei , F . Bach ( 2010 ) Given a collection of jets or events , we can choose a number of themes , and , 
 α i then the LDA algorithm estimates the latent . 
 β ij We can disentangle short distance physics based on their features in the jet substructure , in an unsupervised way .

  18. 
 
 
 
 Latent Dirichlet Allocation D . M . Blei , A . Y . Ng , M . I . Jordan , J . La ff erty ( 2003 ) Useful substructure observables: min( p 2 T, 1 , p 2 T, 2 ) m j 0 , m j 1 , m j 2 n o ∆ R 2 o j 0 = , , 1 , 2 m 2 m j 0 m j 1 j 0 this is a feature in the substructure 1 - un - cluster the jet , calculate the above observables at each stage 
 2 - bin the observables , and form a feature for each stage , from the observables 
 3 - form a ‘document’ describing each jet , and a mixed sample of di ff erent jets 
 4 - analyse these documents using LDA - find the ‘themes’ describing the physics 
 5 - use inference to identify themes in new jets - identify the origin of the jet 


  19. 
 
 
 
 LDA top tagging For our study: 1 - train LDA on mixed samples: 
 S/B = 1 , 1 / 9 , 1 / 99 2 - 
 p T ∈ [350 , 450] GeV ∼ 8 × 10 4 3 - sample size: 
 4 - in accordance with S/B: α = [0 . 5 , 0 . 5] , [0 . 9 , 0 . 1] , [0 . 99 , 0 , 01]

  20. LDA top tagging p ( m j 0 | t ) 1.0 50 100 150 200 250 50 100 150 200 250 0.8 0.6 m j 1 /m j 0 0.4 0.2 theme 1 theme 2 0 0.008 0.016 0 0.006 0.012 50 100 150 200 250 50 100 150 200 250 m j 0 [GeV] m j 0 [GeV]

  21. LDA top tagging p ( m j 0 | t ) 1.0 50 100 150 200 250 50 100 150 200 250 0.8 0.6 m j 1 /m j 0 0.4 0.2 QCD jet top jet 0 0.008 0.016 0 0.006 0.012 50 100 150 200 250 50 100 150 200 250 m j 0 [GeV] m j 0 [GeV]

  22. 
 
 
 
 
 
 
 
 
 
 
 
 
 LDA top tagging Measure performance with ROC curves: 
 G . Kasieczka , T . Plehn , M . Russell , T . results compared to JH top tagger (purple star) and DeepTop 
 Schell ( 2017 ) results have been k - folded , k =10, to estimate robustness

  23. LDA new physics tagging pp → W 0 → φ W → WWW Now for a NP process: m W 0 = 3 TeV , m φ = 400 GeV p ( m j 0 | t ) 1.0 50 100 150 200 250 300 350 400 450 0.8 S/B = 0 . 011 theme 2 α = [0 . 989 , 0 . 011] m j 1 /m j 0 0.6 0.4 theme 1 0.2 0 0.008 0.016 0.24 0 0.01 0.02 0.03 50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450 500 m j 0 [GeV] m j 0 [GeV]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend