ultra lightweight support structure
play

Ultra Lightweight Support Structure and Gaseous Helium Cooling for - PowerPoint PPT Presentation

The Ultra Lightweight Support Structure and Gaseous Helium Cooling for the Mu3e Silicon Pixel Tracker Dirk Wiedner on behalf of Mu3e February 2014 Dirk Wiedner INSTR14 25.02.2014 1 The Mu3e Signal eee rare in SM Enhanced in:


  1. The Ultra Lightweight Support Structure and Gaseous Helium Cooling for the Mu3e Silicon Pixel Tracker Dirk Wiedner on behalf of Mu3e February 2014 Dirk Wiedner INSTR14 25.02.2014 1

  2. The Mu3e Signal • μ → eee rare in SM • Enhanced in: o Super-symmetry o Grand unified models o Left-right symmetric models o Extended Higgs sector o Large extra dimensions  Rare decay (BR<10 -12 , SINDRUM) For BR O(10 -16 ) •  >10 16 muon decays  High decay rates O(10 9 muon/s) Dirk Wiedner INSTR14 25.02.2014 2

  3. The Mu3e Background • Combinatorial background o μ + → e + νν & μ + → e + νν & e + e - o many possible combinations  Good time and  Good vertex resolution required Dirk Wiedner, Mu3e collaboration 7/17/2012 3

  4. Combinatorics Dirk Wiedner, Mu3e collaboration 7/17/2012 4

  5. The Mu3e Background • μ + → e + e - e + νν o Missing energy ( ν )  Good momentum resolution (R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004) Dirk Wiedner, Mu3e collaboration 7/17/2012 5

  6. Challenges • High rates • Good timing resolution • Good vertex resolution • Excellent momentum resolution  Extremely low material budget Dirk Wiedner, Mu3e collaboration 7/17/2012 6

  7. Challenges • High rates: 10 9 μ /s • Good timing resolution: 100 ps • Good vertex resolution: ~100 μ m • Excellent momentum resolution: ~ 0.5 MeV/c 2  Extremely low material budget:  1x10 -3 X 0 (Si-Tracker Layer)  HV-MAPS spectrometer  50 μ m thin sensors  B ~1 T field  + Timing detectors Dirk Wiedner, Mu3e collaboration 7/17/2012 7

  8. Phased Experiment Phase Ia Target double hollow cone • Silicon pixel tracker • Muon beam O(10 7 /s) • Scintillating fiber tracker • • Helium atmosphere Recurl station • • 1 T B-field Tile detector • Dirk Wiedner INSTR14 25.02.2014 8

  9. Phased Experiment Phase Ib Target double hollow cone • Silicon pixel tracker • Muon beam O(10 8 /s) • Scintillating fiber tracker • • Helium atmosphere Recurl station • • 1 T B-field Tile detector • Dirk Wiedner INSTR14 25.02.2014 9

  10. Phased Experiment Phase II Ca. 2 m total length Target double hollow cone • Silicon pixel tracker • Muon beam O(10 9 /s) • Scintillating fiber tracker • • Helium atmosphere Recurl station x 2 • • 1 T B-field Tile detector x 2 • Dirk Wiedner INSTR14 25.02.2014 10

  11. Ultra Light Support Structure for the Pixel Tracker Dirk Wiedner INSTR14 25.02.2014 11

  12. Sandwich Design • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels <0.1% of X 0 o Support for all detectors Dirk Wiedner INSTR14 25.02.2014 12

  13. Thinned Pixel Sensors • HV-MAPS* o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors *Previous talk: Tobias Weber “ High Voltage Monolithic Active Pixel Sensors for the PANDA Luminosity Detector ” MuPix3 thinned to < 90μm Dirk Wiedner INSTR14 25.02.2014 13

  14. Kapton ™ Flex Print • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Laser-cut flex print prototype Dirk Wiedner INSTR14 25.02.2014 14

  15. Pixel Modules • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors CAD of Kapton™ frames Dirk Wiedner INSTR14 25.02.2014 15

  16. Overall Design • HV-MAPS o Thinned to 50 μm • Two halves for layers 1+2 o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • 6 modules in layer 3 • 7 modules in layer 4 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors CAD of Kapton™ frames Dirk Wiedner INSTR14 25.02.2014 16

  17. Inner Layers • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Vertex Prototype with 100 μ m Glass Dirk Wiedner INSTR14 25.02.2014 17

  18. Outer Module • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Layer 3 Prototype in Assembling Frame with 50 μ m Glass Dirk Wiedner INSTR14 25.02.2014 18

  19. Detector Frame • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton ™ flex print o 25 μm Kapton ™ o 12.5 μm Alu traces • Kapton ™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Layer 3 Prototype in Assembling Frame with 50 μ m Glass Dirk Wiedner INSTR14 25.02.2014 19

  20. Cooling Dirk Wiedner INSTR14 25.02.2014 20

  21. Cooling Concept He • Liquid cooling o For readout-electronics • Gaseous He cooling Liquid Liquid o For Silicon tracker He Dirk Wiedner INSTR14 25.02.2014 21

  22. Liquid Cooling • Beam pipe cooling o With cooling liquid o 5°C temperature o Significant flow possible o … using grooves in pipe • For electronics o FPGAs and o Power regulators o Mounted to cooling plates • Total power several kW Dirk Wiedner INSTR14 25.02.2014 22

  23. He Cooling • Gaseous He cooling o Low multiple Coulomb scattering He o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame He • V-shapes • Outer surface 150mW/cm 2 x 19080cm 2 = 2.86 KW Dirk Wiedner INSTR14 25.02.2014 23

  24. He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Temperatures between 20 ° C to 70 ° C ok. Dirk Wiedner INSTR14 25.02.2014 24

  25. He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR14 25.02.2014 25

  26. He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR14 25.02.2014 26

  27. He Cooling • Gaseous He cooling o Low multiple Coulomb scattering Kapton™ Frame o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame Cooling outlets V-shape • V-shapes • Outer surface Dirk Wiedner INSTR14 25.02.2014 27

  28. He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR14 25.02.2014 28

  29. Comparison Simulation He and Air He Air Dirk Wiedner INSTR14 25.02.2014 29

  30. Tests • Full scale prototype o Layer 3+4 of silicon tracker o Ohmic heating (150mW/cm 2 ) o 561.6 W for layer 3 +4 o … of Aluminum -Kapton ™ • Cooling with external fan o Air at several m/s • Temperature sensors attached to foil o LabView readout • First results promising o ΔT < 60 °K Dirk Wiedner INSTR14 25.02.2014 30

  31. Dirk Wiedner INSTR14 25.02.2014 31

  32. Tests • Full scale prototype o Layer 3+4 of silicon tracker o Ohmic heating (150mW/cm 2 ) o 561.6 W for layer 3 +4 o … of Aluminum-Kapton ™ • Cooling with external fan o Air at several m/s • Temperature sensors attached to foil o LabView readout • First results promising o ΔT < 60 °K Dirk Wiedner INSTR14 25.02.2014 32

  33. Test Results • Full scale prototype o Layer 3+4 of silicon tracker o Ohmic heating (150mW/cm 2 ) o 561.6 W for layer 3 +4 o … of Aluminum -Kapton ™ • Cooling with external fan o Air at several m/s • Temperature sensors attached to foil o LabView readout • First results promising o ΔT < 60 °K  No sign of vibration in air Dirk Wiedner INSTR14 25.02.2014 33

  34. Comparison Simulation and Tests Dirk Wiedner INSTR14 25.02.2014 34

  35. Simulation with V-shape cooling Configuration: • Main helium flux: v = 0.5m/s o Flux in Nozzle: v = 5 m/s o • In V-shape against main flux • Next to V-shape against main flux  31.42 mL/s per nozzle  6.786 L/s for 3. Layer Results: • ∆ T max ≈ 42°C o ∆ T max close to end of tube o T raises at last third of tube o → Extra Improvement using V-shapes as cooling channels Dirk Wiedner INSTR14 25.02.2014 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend