ultra high energy cosmic ray observations
play

Ultra-High Energy Cosmic Ray Observations Karl-Heinz Kampert, - PowerPoint PPT Presentation

Ultra-High Energy Cosmic Ray Observations Karl-Heinz Kampert, University of Wuppertal e-mail: kampert@uni-wuppertal.de Present Status of Detectors The Issues Energy Spectrum CR Composition (p,Fe, , ) Arrival Directions


  1. Ultra-High Energy Cosmic Ray Observations Karl-Heinz Kampert, University of Wuppertal e-mail: kampert@uni-wuppertal.de • Present Status of Detectors • The Issues – Energy Spectrum – CR Composition (p,Fe, γ , ν ) – Arrival Directions • The Future • Concluding Remarks Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  2. UHECR Experiments analysis only • Understand the origin of CRs • Find the most power cosmic accelerators • Learn about CR acceleration AGASA • EHE particle physics operating HiRes-I & II construction Auger – Starting the planned Golden Hybrid Era – T elescope Array JEM-EUSO 2 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  3. Exposures 2007 10 4 Exposure (km 2 sr yr) 5165 km 2 sr yr ± 3% Auger-SD 0.8 full Auger year AGASA HiRes I mono 10 3 Auger-FD (1°-31°) (3°-17°; 9 yrs) Note: 10 2 Flat for Ground Arrays HiRes II mono (3°-31°, 6.5 yrs) growing for 10 Fluorescence Telescopes Auger SD 2007 Auger Hybrid 2007 HiRes-I Monocular 1 AGASA Yakutsk HiRes-II Monocular Haverah Park 1991 Flys Eye Stereo -1 10 Akeno HiRes Prototype/MIA Haverah Park 2003 -2 10 17 17.5 18 18.5 19 19.5 20 20.5 21 log 10 (E) (eV) 3 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  4. The HiRes Experiment • HiRes-I HiRes-I – 21 mirrors – 1 ring, full azimuth, 3°-17° elevation – Sample & Hold DAQ System – Took data: June 1997-April 2006 • HiRes-II HiRes-II – 42 mirrors – 2 rings, full azimuth, 3°-31° elevation – FADC DAQ System – Took data: Dec. 1999-April 2006 • Both: – 5.1 m 2 mirrors, 16x16 PMTs slide from D. Bergmann 4

  5. HiRes Monocular Spectra GZK effect ±3.3 Expect 39.9 , observe 13 ; 6.5x10 -6 (4.3 σ ) P=7x10 -7 (4.8 σ ) 3.26 ± 0.02 2.81 ± 0.03 5.1±0.7 10 18.65 eV 10 19.75 eV 5 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  6. HiRes Aperture & Error Table HiRes Energy Scale Uncertainties – Missing Energy 5% HiRes I vs – Energy Loss Rate 10% HiRes II – Fluorescence Yield 6% – Atmospheric Conditions 4% – Photometric Calibration 10% • Total Energy Scale Uncertainty 17% factor 70 per decade in E ! 10 4 10 3 exp. Resol. factor 10 between p & Fe 10 2 aperture (km 2 sr) Iron Depends on assumptions about models, mass and 10 spectrum slope Pure Iron Aperture 1 protons Pure Proton Aperture -1 10 17 17.5 18 18.5 19 19.5 log 10 (E) 6 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  7. Pierre Auger Observatory 1482 deployed 1436 filled 1364 taking data ~ 85% All 4 fluorescence buildings complete, each with 6 telescopes Final: 1600 tanks August 1, 2007 r o t c e t e D d i r b y H 7 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  8. The Auger Hybrid Observatory ...1600 Water Cherenkov tanks 24 fluorescence telescopes... 8 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  9. Quadruple Event 20 May 2007 E ~ 10 19 eV 9 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  10. Hybrid - Precise Shower Geometry first step towards precise energy, depth of maximum Arrival time at ground provided by the ^ . S Shower Detector Plane SD, removes degeneracy in the FD S i geometry fit shower � i � 0 - � i prop t 0 � i R p � 0 t i � i FD t n o r f r e w o h s e n a l P d n u o r G Get T 0 from SD tank! Geometry uncertainties shrink! 10 Karl-Heinz Kampert TAUP 2007, Sendai (Japan)

  11. The Power of Hybrid Hybrid SD-Only FD-only Angular Resolution ~ 0.2° ~ 1 - 2° ~ 3 - 5° Aperture Flat Flat growing model ind. model ind. model depend. Energy model ind. model dep. model ind. The combination is more than the sum of the individuals ! 11 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  12. FD-mono-Uncertainties: HiRes vs Auger Auger HiRes Fluorescence Yield 14% 6% 11,6 { Energy loss rate 10% p, T, & humidity effects 7% 4% on yield Photometric Calibration 9,5% 10% Invisible Energy 4% 5% Reconstruction 10% ? Total 21% 17% if reconstruction uncertainty is ignored: 19 % Note: this causes an integral flux uncertainty ( γ =3.0) of: 46 % 37 % (on top of effect of acceptance uncertainty) 12 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  13. FD energy calibration Fluorescence yield is at present the dominant error contribution also: Auger uses Nagano et al, HiRes uses Kakimoto et al. New (better) data will become available from: AIRFLY using test beam at DAΦNE and elsewhere measuring p, T, and humidity dependence of abs. yield FLASH using test beam at SLAC MACFLY using CERN-SPS test beam Data on abs. yields expected to be released Goal: reach 1 % level at workshop in Spain next week 13 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  14. FD Systematics by Interaction Models Drescher et al.; Astropart. Phys. 21 (2004) 87 FD: energy obtained from integral QGSJet & SIBYLL agree within a few percent Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  15. SD Systematics by Interaction Models Drescher et al.; Astropart. Phys. 21 (2004) 87 Effect of High-Energy Interaction Model : ~30 less μ ‘s Sibyll / QGSJet (Gheisha) in QGSJet ~ 30 % effect to E GHEISHA produces Effect of Low-Energy too many pions Interaction Model: GHEISHA & FLUKA / UrQMD ~ 10-20 % effect to E Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  16. Auger: SD Calibration by FD 4·10 19 eV Nagano et al. FY used Surface Detector σ (E FD -E SD )= 19% ... improves as energy increases ! 387 hybrid events Fluorescence Det. Energy 16 Karl-Heinz Kampert TAUP 2007, Sendai (Japan)

  17. Energy Spectrum 17 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  18. Auger E-Spectrum ( Θ < 60°) Pierre Auger Collab. @ ICRC 2007 E[eV] 2 � 10 19 3 � 10 19 3 � 10 18 10 19 10 20 2 � 10 20 lg(J/(m -2 sr -1 s -1 eV -1 )) -31 4128 Exp Obs Slope = -2.62 ± 0.03 2450 >10 19.6 132 ± 9 51 1631 -32 1185 > 10 20 30 ± 2.5 2 761 560 significance = 6 σ 367 284 -33 178 125 -34 79 54 25 -35 14 Exposures Auger: 5165 km 2 yr sr 5 5 -36 AGASA: 1619 km 2 yr sr HiRes: ~ 5000 km 2 yr sr 1 1 only statistical errors are shown -37 system: 6 % stat. + 22% syst. 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 20.2 20.4 lg(E/eV) Karl-Heinz Kampert TAUP 2007, Sendai (Japan)

  19. Energy Spectra: Comparison 25 log(J(E)*E 3 (/m 2 s sr eV -2 ) 24.6 24.2 23.8 Auger (2007) HR-I (mono) HR-II (mono) AGASA 23.4 23 18 18.5 19 19.5 20 20.5 log(E/eV) 19 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  20. Energy Spectra: Comparison 25 log(J(E)*E 3 (/m 2 s sr eV -2 ) Energy of AGASA scaled down by 15% 24.6 24.2 Energy of Auger scaled up by 15% 23.8 Auger (2007), E*1.15 HR-I (mono) HR-II (mono) Remember: AGASA 23.4 Auger and HiRes quote uncertainties in E of ~ 20% 23 18 18.5 19 19.5 20 20.5 log(E/eV) 20 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  21. Auger Spectrum & Source Distr. Test of Berezinsky’s e + e - dip model Auger 2007 24.5 eV 2 ]) - 4.1 ± 0.4 -2.62 ± 0.03 -3.30 ± 0.06 log(JxE 3 [m 2 s 1 19.55 24 18.65 Strong source evolution ~ (1+z) 5 �฀฀฀฀� source ~ 2.3 23.5 Uni form source ~ � source ~ 2.55 Fitting dip-model (Berezinsky et al.) can GZK e ff ect is modified by 23 describe E-spectra... • E-distribution of source 18 18.5 19 19.5 20 ... as ankle model can do • source local overdensity/deficit log(E [eV]) ... and mixed model • di ff erent values of E max 21 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  22. Composition 22 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  23. Ankle: Measurement of composition is crucial ! dip model onset EG CRs p + γ CMB → p + e + e − Allard, Olinto, Parizot; astro-ph/00703633 Supernovae ? heavy p-dom. 23 Karl-Heinz Kampert TAUP 2007, Sendai (Japan)

  24. Mass from X max observations Pierre Auger Collab. @ ICRC 2007 ] Auger 2007 2 > [g/cm 850 800 syst. err. max 30 74 proton <X 13 750 114 40±4 g/cm 2 307 185 272 241 402 325 489 700 410 454 2 71±5 g/cm 511 QGSJETII-03 QGSJETII-03 278 QGSJET01 QGSJET01 650 SIBYLL2.1 SIBYLL2.1 iron EPOS1.6 EPOS1.6 18 19 10 10 E [eV] Straight line fit of elongation rate: P < 3% Systematic error of X max : <15 g/cm2 @ <10 18 eV; < 12 g/cm 2 @ > 10 18 eV 24 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  25. Mass from X max observations ] 2 Auger 2007 > [g/cm 850 HiRes 2007 800 max proton <X 750 . d l e o d m o m - 700 p - e i d l k n a QGSJETII-03 QGSJETII-03 QGSJET01 QGSJET01 650 SIBYLL2.1 SIBYLL2.1 iron EPOS1.6 EPOS1.6 18 19 10 10 E [eV] Elongation rate will be the most sensitive tool to setle quest about G-EG-Transition 25 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

  26. UHE Photons ? Expected by Top-Down models e.g.: S uper H eavy D ark M atter fit to AGASA 100 Bottom up Protons j(E) E 2 [eV cm -2 s -1 sr -1 ] AGASA Data 10 M H D S m o f r γ p from SHDM 1 0.1 0.01 1e+19 1e+20 1e+21 E [eV] Gelmini, et al, astro-ph/0506128 26 Karl-Heinz Kampert TAUP, Sept. 2007, Sendai (Japan)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend