two sided boundary labeling with adjacent sides
play

Two-Sided Boundary Labeling with Adjacent Sides Philipp Kindermann - PowerPoint PPT Presentation

Two-Sided Boundary Labeling with Adjacent Sides Philipp Kindermann Lehrstuhl f ur Informatik I Universit at W urzburg Joint work with Benjamin Niedermann, Ignaz Rutter, Marcus Schaefer, Andr e Schulz & Alexander Wolff Problem


  1. Two-Sided Boundary Labeling with Adjacent Sides Philipp Kindermann Lehrstuhl f¨ ur Informatik I Universit¨ at W¨ urzburg Joint work with Benjamin Niedermann, Ignaz Rutter, Marcus Schaefer, Andr´ e Schulz & Alexander Wolff

  2. Problem Statement enclosing rectangle

  3. Problem Statement • n sites in general position enclosing rectangle sites

  4. Problem Statement labels • n sites in general position • labels on the boundary enclosing rectangle sites

  5. Problem Statement labels ports • n sites in general position • labels on the boundary • ports are fixed or sliding enclosing rectangle sites

  6. Problem Statement labels ports • n sites in general position • labels on the boundary • ports are fixed or sliding enclosing rectangle sites

  7. Problem Statement labels ports • n sites in general position • labels on the boundary • ports are fixed or sliding leaders enclosing rectangle sites Find a site-label matching with crossing-free leaders.

  8. Why Boundary Labeling? � Google Maps c

  9. Why Boundary Labeling? � Google Maps c Hotel Ibis Main Station Kulturspeicher Bus Terminal Main Station West Hotel Poppular Juliuspromenade Escalera Barbarossaplatz Ulmer Hof Hotel Urlaub

  10. Why Boundary Labeling? Kulturspeicher Hotel Ibis � Google Maps c Main Station Bus Terminal Main Station West Hotel Poppular Barbarossaplatz Juliuspromenade Escalera Hotel Urlaub Ulmer Hof

  11. Why Boundary Labeling? � DW-TV c

  12. Why Boundary Labeling? � DW-TV c Henry Vandyke Carter, via Wikimedia Commons

  13. Why Boundary Labeling? � DW-TV c Henry Vandyke Carter, via Wikimedia Commons � friv5games.me c

  14. Previous Work sides 1 2 (opp.) 2 (adj.) 4 style

  15. Previous Work sides 1 2 (opp.) 2 (adj.) 4 style O ( n 2+ ǫ ) [1] s [1] Bekos et al. CGTA’07

  16. Previous Work sides 1 2 (opp.) 2 (adj.) 4 style O ( n 2+ ǫ ) [1] s O ( n 2 log 3 n ) [1] O ( n log n ) [1] O ( n 2 ) [1] opo [1] Bekos et al. CGTA’07

  17. Previous Work sides 1 2 (opp.) 2 (adj.) 4 style O ( n 2+ ǫ ) [1] s O ( n 2 log 3 n ) [1] O ( n log n ) [1] O ( n 2 ) [1] opo O ( n 2 ) [2] O ( n 3 ) [3] do / pd [1] Bekos et al. CGTA’07 [2] Benkert et al. JGAA’09 [3] Bekos et al. Algorithmica’10

  18. Previous Work sides 1 2 (opp.) 2 (adj.) 4 style O ( n 2+ ǫ ) [1] s O ( n 2 log 3 n ) [1] O ( n log n ) [1] O ( n 2 ) [1] opo O ( n 2 ) [2] O ( n 3 ) [3] do / pd O ( n log n ) [2] O ( n 2 ) [1] po [1] Bekos et al. CGTA’07 [2] Benkert et al. JGAA’09 [3] Bekos et al. Algorithmica’10

  19. Previous Work sides 1 2 (opp.) 2 (adj.) 4 style O ( n 2+ ǫ ) [1] s O ( n 2 log 3 n ) [1] O ( n log n ) [1] O ( n 2 ) [1] opo O ( n 2 ) [2] O ( n 3 ) [3] do / pd ? ? O ( n log n ) [2] O ( n 2 ) [1] po [1] Bekos et al. CGTA’07 [2] Benkert et al. JGAA’09 [3] Bekos et al. Algorithmica’10

  20. Previous Work sides 1 2 (opp.) 2 (adj.) 4 style O ( n 2+ ǫ ) [1] s O ( n 2 log 3 n ) [1] O ( n log n ) [1] O ( n 2 ) [1] opo O ( n 2 ) [2] O ( n 3 ) [3] do / pd ? ? O ( n log n ) [2] O ( n 2 ) [1] po [1] Bekos et al. CGTA’07 [2] Benkert et al. JGAA’09 [3] Bekos et al. Algorithmica’10

  21. Previous Work sides 1 2 (opp.) 2 (adj.) 4 style O ( n 2+ ǫ ) [1] s O ( n 2 log 3 n ) [1] O ( n log n ) [1] O ( n 2 ) [1] opo O ( n 2 ) [2] O ( n 3 ) [3] do / pd ? ? O ( n log n ) [2] O ( n 2 ) [1] po 2-Approximation on number of bends [4] [1] Bekos et al. CGTA’07 [2] Benkert et al. JGAA’09 [3] Bekos et al. Algorithmica’10 [4] Speckmann & Verbeek LATIN’10

  22. Previous Work sides 1 2 (opp.) 2 (adj.) 4 style O ( n 2+ ǫ ) [1] s O ( n 2 log 3 n ) [1] O ( n log n ) [1] O ( n 2 ) [1] opo O ( n 2 ) [2] O ( n 3 ) [3] do / pd ? ? O ( n log n ) [2] O ( n 2 ) [1] po 2-Approximation on number of bends [4] [1] Bekos et al. CGTA’07 [2] Benkert et al. JGAA’09 [3] Bekos et al. Algorithmica’10 [4] Speckmann & Verbeek LATIN’10

  23. Structure of Planar Solutions R

  24. Structure of Planar Solutions xy -separating curve C C R

  25. Structure of Planar Solutions xy -separating curve C • xy -monotone C R

  26. Structure of Planar Solutions xy -separating curve C • xy -monotone • rectilinear C R

  27. Structure of Planar Solutions xy -separating curve C • xy -monotone • rectilinear C • connects the top-right to the bottom-left corner of R R

  28. Structure of Planar Solutions xy -separating curve C • xy -monotone • rectilinear C • connects the top-right to the bottom-left corner of R xy -separated solution R

  29. Structure of Planar Solutions xy -separating curve C • xy -monotone • rectilinear C • connects the top-right to the bottom-left corner of R xy -separated solution R • top sites and leaders lie above C

  30. Structure of Planar Solutions xy -separating curve C • xy -monotone • rectilinear C • connects the top-right to the bottom-left corner of R xy -separated solution R • top sites and leaders lie above C • right sites and leaders lie below C

  31. Structure of Planar Solutions xy -separating curve C • xy -monotone • rectilinear C • connects the top-right to the bottom-left corner of R xy -separated solution R • top sites and leaders lie above C • right sites and leaders lie below C • does not contain any of the following patterns C C C C

  32. Structure of Planar Solutions xy -separated solution • does not contain any of the following patterns C C C C

  33. Structure of Planar Solutions xy -separated solution • does not contain any of the following patterns C C C C Planar solution ⇒ xy -separated planar solution

  34. Structure of Planar Solutions xy -separated solution • does not contain any of the following patterns C C C C Planar solution ⇒ xy -separated planar solution C C C C

  35. Structure of Planar Solutions xy -separated solution • does not contain any of the following patterns C C C C Planar solution ⇒ xy -separated planar solution C C C C Eliminate local crossings

  36. The Strip Condition Given: xy -monotone curve C C R

  37. The Strip Condition Given: xy -monotone curve C • h 0 , . . . , h k : horizontal segments of C extended to the left h 0 h 1 C h i h k R

  38. The Strip Condition Given: xy -monotone curve C • h 0 , . . . , h k : horizontal segments of C extended to the left • S 1 , . . . , S k : strips of R partitioned by h 0 , . . . , h k h 0 S 1 h 1 S i C h i S k h k R

  39. The Strip Condition Given: xy -monotone curve C • h 0 , . . . , h k : horizontal segments of C extended to the left • S 1 , . . . , S k : strips of R partitioned by h 0 , . . . , h k • p i : any point on h i \ C h 0 S 1 h 1 S i C h i p i S k h k R

  40. The Strip Condition Given: xy -monotone curve C • h 0 , . . . , h k : horizontal segments of C extended to the left • S 1 , . . . , S k : strips of R partitioned by h 0 , . . . , h k • p i : any point on h i \ C • R p i : polygon spanned by p i , h i and C h 0 S 1 h 1 S i R p i C h i p i S k h k R

  41. The Strip Condition Given: xy -monotone curve C • h 0 , . . . , h k : horizontal segments of C extended to the left • S 1 , . . . , S k : strips of R partitioned by h 0 , . . . , h k • p i : any point on h i \ C • R p i : polygon spanned by p i , h i and C • R p i is valid : number of sites ≥ number of ports h 0 S 1 h 1 S i R p i C h i p i S k h k R

  42. The Strip Condition Given: xy -monotone curve C • h 0 , . . . , h k : horizontal segments of C extended to the left • S 1 , . . . , S k : strips of R partitioned by h 0 , . . . , h k • p i : any point on h i \ C • R p i : polygon spanned by p i , h i and C • R p i is valid : number of sites ≥ number of ports Condition. strip condition of S i is satisfied ⇔ ∃ p i ∈ h i \ C : R p i is valid. h 0 S 1 h 1 S i R p i C h i p i S k h k R

  43. The Strip Condition - An Example C

  44. The Strip Condition - An Example S 1 h 1 C

  45. The Strip Condition - An Example S 1 h 1 p 1 C

  46. The Strip Condition - An Example S 1 h 1 p 1 C

  47. The Strip Condition - An Example S 1 h 1 C

  48. The Strip Condition - An Example S 1 h 1 C

  49. The Strip Condition - An Example S 1 h 1 C

  50. The Strip Condition - An Example S 1 h 1 p 1 C

  51. The Strip Condition - An Example S 1 h 1 p 1 C

  52. The Strip Condition - An Example S 1 h 1 p 1 C The strip conditions are sufficient and necessary

  53. The Algorithm • Find an xy -separating curve C that satisfies the strip conditions.

  54. The Algorithm • Find an xy -separating curve C that satisfies the strip conditions. • Consider the dual of the grid induced by sites and ports

  55. The Algorithm • Find an xy -separating curve C s − 1 r r s that satisfies the strip conditions. • Consider the dual of the grid t induced by sites and ports G ( s , t ) • Define grid points G ( s , t ) and top-right corner r G (0, 0)

  56. The Algorithm Dynamic Program: s − 1 r s Compute table T [( s , t ), u ] . t G ( s , t ) G (0, 0)

  57. The Algorithm Dynamic Program: s − 1 r s Compute table T [( s , t ), u ] . T [( s , t ), u ] = true t G ( s , t ) ⇔ ∃ xy -monotone chain C : G (0, 0)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend