two parameter deformation of multivariate hook product
play

Two-parameter Deformation of Multivariate Hook Product Formulae - PowerPoint PPT Presentation

Two-parameter Deformation of Multivariate Hook Product Formulae Soichi OKADA (Nagoya University) Two-dimensional Lattice Models IHP, Oct. 9, 2009 Hook Product Formulae FrameRobinsonThrall n ! f = v D ( ) h ( v )


  1. Two-parameter Deformation of Multivariate Hook Product Formulae Soichi OKADA (Nagoya University) Two-dimensional Lattice Models IHP, Oct. 9, 2009

  2. Hook Product Formulae • Frame–Robinson–Thrall n ! f λ = � v ∈ D ( λ ) h λ ( v ) • Stanley (univariate z ) 1 z | π | = � v ∈ D ( λ ) (1 − z h λ ( v ) ) � π : reverse plane partition of shape λ • Gansner (multivariate z = ( · · · , z − 1 , z 0 , z 1 , · · · ) ) 1 z π = � � v ∈ D ( λ ) (1 − z [ H D ( λ ) ( v )]) π : reverse plane partition of shape λ

  3. Goal : ( q, t ) -deformations of multivariate hook product formulae 1 → ( tx ; q ) ∞ 1 − x − , ( x ; q ) ∞ i ≥ 0 (1 − aq i ) . where ( a ; q ) ∞ = � Our formulae look like ( t z [ H P ( v )]; q ) ∞ W P ( σ ; q, t ) z σ = � � . ( z [ H P ( v )]; q ) ∞ v ∈ P σ ∈A ( P ) This talk is based on arXiv:0909.0086.

  4. Plan 1. Symmetric function approach to Gansner’s formula (an approach by Okounkov–Reshetikhin) 2. ( q, t ) -deformation of Gansner’s formula (for ordinary or shifted reverse plane partitions) 3. ( q, t ) -deformation of Peterson–Proctor’s formula (for P -partitions on d -complete poset P )

  5. Symmetric Function Approach to Gansner’s Formula

  6. Diagrams and Shifted Diagrams For a partition λ , we denote its diagram by D ( λ ) : D ( λ ) = { ( i, j ) ∈ P 2 : 1 ≤ j ≤ λ i } . For a strict partition µ , we denote its shifted diagram by S ( µ ) : S ( µ ) = { ( i, j ) ∈ P 2 : i ≤ j ≤ µ i + i − 1 } . Example : D ((4 , 3 , 1)) S ((4 , 3 , 1))

  7. Reverse Plane Partitions A (weak) reverse plane partition of shape λ is an array of non-negative integers π 1 , 1 π 1 , 2 · · · · · · π 1 ,λ 1 · · · π 2 , 1 π 2 , 2 π 2 ,λ 2 π = . . . . . . π r, 1 π r, 2 · · · π r,λ r → N ) satisfying (i.e., a map D ( λ ) − π i,j ≤ π i,j +1 , π i,j ≤ π i +1 ,j . Let A ( D ( λ )) be the set of reverse plane partitions of shape λ : A ( D ( λ )) = { π : reverse plane partition of shape λ } .

  8. A shifted (weak) reverse plane partition of shifted shape µ is an array of non-negative integers · · · · · · σ 1 , 1 σ 1 , 2 σ 1 , 3 σ 1 ,µ 1 σ 2 , 2 σ 2 , 3 · · · σ 2 ,µ 2 +1 σ = ... σ r,r · · · σ r,µ r + r − 1 → N ) satisfying (i.e., a map S ( µ ) − σ i,j ≤ σ i,j +1 , σ i,j ≤ σ i +1 ,j . Let A ( S ( µ )) be the set of shifted reverse plane partitions of shape µ : A ( S ( µ )) = { σ : shifted reverse plane partition of shape µ } .

  9. Trace Generating Function Given an ordinary or shifted reverse plane partition π = ( π i,j ) , we define its k -th trace t k ( π ) by � t k ( π ) = π i,i + k . i We write z π i,j z π = z t k ( π ) � � = j − i , k i,j k and consider trace generating functions with respect to this weight. 0 1 3 3 Example : For π = 1 1 3 , we have 2 4 z π = z − 22 z − 11+4 z 00+1 z 11+3 z 23 z 33 .

  10. Hook and Shifted Hook For a partition λ , the hook at ( i, j ) in D ( λ ) is defined by H D ( λ ) ( i, j ) = { ( i, j ) } ∪ { ( i, l ) ∈ D ( λ ) : l > j } ∪ { ( k, j ) ∈ D ( λ ) : k > i } . For a strict partition µ , the shifted hook at ( i, j ) in S ( µ ) is defined by H S ( µ ) ( i, j ) = { ( i, j ) } ∪ { ( i, l ) ∈ S ( µ ) : l > j } ∪ { ( k, j ) ∈ S ( µ ) : k > i } ∪ { ( j + 1 , l ) ∈ S ( µ ) : l > j } . We write � z [ H ] = z j − i ( i,j ) ∈ H for a finite subset H ⊂ P 2 .

  11. Example : The hook at (2 , 2) The shifted hook at (2 , 3) in D ((7 , 5 , 3 , 3 , 1)) in S ((7 , 6 , 4 , 3 , 1))

  12. Gansner’s Hook Product Formula (a) For a partition λ , the trace generating function of A ( D ( λ )) is given by 1 z π = � � 1 − z [ H D ( λ ) ( v )] . π ∈A ( D ( λ )) v ∈ D ( λ ) (b) For a strict partition µ , the trace generating function of A ( S ( µ )) is given by 1 z σ = � � 1 − z [ H S ( µ ) ( v )] . σ ∈A ( S ( µ )) v ∈ S ( µ )

  13. Idea of Proof of Gansner’s formula Consider generating functions z σ � R S ( µ ) ,τ ( z ) = σ ∈A ( S ( µ ) ,τ ) of shifted reverse plane partitions of shifted shape µ with profile τ , and express them in terms of Schur functions by using operator calculus on the ring of symmetric functions. Then we have � z π = � R S ( µ ) ,τ ( x ) R S ( ν ) ,τ ( y ) , τ π ∈A ( D ( λ )) z σ = � � R S ( µ ) ,τ ( z ) . τ σ ∈A ( S ( µ )) Hence Gansner’s formulae follow from Cauchy and Schur–Littlewood identities.

  14. Diagonals and Profile For an array of non-negative integers σ of shifted shape µ , we define its k -th diagonal σ [ k ] by putting σ [ k ] = ( · · · , σ 2 ,k +2 , σ 1 ,k +1 ) ( k = 0 , 1 , 2 , · · · ) . We call σ [0] the profile and put A ( S ( µ ) , τ ) = { σ ∈ A ( S ( µ )) : σ [0] = τ } . 0 0 1 2 3 3 Example : For σ = 1 2 3 3 3 , we have 2 4 σ [0] = (2 , 1 , 0) , σ [1] = (4 , 2 , 0) , σ [2] = (3 , 1) , σ [3] = (3 , 2) , σ [4] = (3 , 3) , σ [5] = (3) .

  15. A key is the following observation. Lemma The following are equivalent: (i) σ is a shifted reverse plane partition. (ii) Each σ [ k ] is a partition and � σ [ k − 1] ≻ σ [ k ] if k is a part of µ, σ [ k − 1] ≺ σ [ k ] otherwise . where we write α ≻ β if α 1 ≥ β 1 ≥ α 2 ≥ β 2 ≥ · · · , i.e., the skew diagram α/β is a horizontal strip.

  16. Let h k and h ⊥ k be the multiplication and skewing operators on the ring of symmetric functions Λ associated to the complete symmetric function h k . Consider the generating functions H + ( u ) = h k u k , H − ( u ) = h ⊥ k u k . � � k ≥ 0 k ≥ 0 and the operator D ( z ) : Λ → Λ defined by D ( z ) s λ = z | λ | s λ . First we apply the Pieri rule t | κ |−| λ | s κ , H − ( t ) s λ = t | λ |−| κ | s κ , H + ( t ) s λ = � � κ ≻ λ κ ≺ λ and Lemma above to obtain

  17. If we define ε 1 , · · · , ε N ( N ≥ µ 1 ) by Lemma � + if k is a part of µ, ε k = − otherwise , then we have D ( z 0 ) H ε 1 (1) D ( z 1 ) H ε 2 (1) D ( z 2 ) H ε 2 (1) · · · H ε N − 1 (1) D ( z N − 1 ) H ε N (1)1 � = R S ( µ ) ,τ ( z ) s τ , τ where R S ( µ ) ,τ ( z ) is the generating function of shifted reverse plane par- titions of shifted shape µ with profile τ : � z σ . R S ( µ ) ,τ ( z ) = σ ∈A ( S ( µ ) ,τ )

  18. Example : If µ = (6 , 5 , 2) and N = 6 , then ε = ( − , + , − , − , + , +) and we compute D ( z 0 ) H − (1) D ( z 1 ) H + (1) D ( z 2 ) H − (1) D ( z 3 ) H − (1) D ( z 4 ) H + (1) D ( z 5 ) H + (1)1 . σ [0] σ [1] σ [2] σ [3] σ [4] σ [5] ∅ σ [0] ≺ σ [1] ≻ σ [2] ≺ σ [3] ≺ σ [4] ≻ σ [5] ≻ ∅ .

  19. Commutation Relations By using the commutation relations D ( z ) H + ( u ) = H + ( zu ) D ( z ) , D ( z ) H − ( u ) = H − ( z − 1 u ) D ( z ) , D ( z ) D ( z ′ ) = D ( zz ′ ) , we obtain D ( z 0 ) H ε 1 (1) D ( z 1 ) H ε 2 (1) D ( z 2 ) H ε 2 (1) · · · H ε N − 1 (1) D ( z N − 1 ) H ε N (1) z ε N z ε 1 z ε 2 = H ε 1 (˜ 1 ) H ε 2 (˜ 2 ) · · · H ε N (˜ N ) D (˜ z N ) , where we put z k = z 0 z 1 · · · z k − 1 . ˜

  20. Further, by using the commutation relation 1 H − ( u ) H + ( v ) = 1 − uvH + ( v ) H − ( u ) , we can derive z ε N z ε 1 z ε 2 H ε 1 (˜ 1 ) H ε 2 (˜ 2 ) · · · H ε N (˜ N ) r N − r 1 H + (˜ H − (˜ � � � = z µ k ) z µ c l ) . z − 1 1 − ˜ k ˜ z µ l µ c µ c k <µ l k =1 l =1 where µ c is the strict partition formed by the complement of µ in { 1 , 2 , · · · , N } : { µ 1 , · · · , µ r } ⊔ { µ c 1 , · · · , µ c N − r } = { 1 , 2 , · · · , N } .

  21. Generating Functions in terms of Schur Functions Finally, by using the Cauchy identity r � H + (˜ � z µ 1 , · · · , ˜ z µ k )1 = s τ (˜ z µ r ) s τ , τ k =1 we have Proposition The generating function of shifted reverse plane partitions of shifted shape µ with profile τ is given by 1 z σ = � � · s τ (˜ z µ 1 , · · · , ˜ z µ r ) , z − 1 1 − ˜ k ˜ z µ l µ c µ c k <µ l σ ∈A ( S ( µ ); τ ) where { µ 1 , · · · , µ r } ⊔ { µ c 1 , · · · , µ c N − r } = { 1 , 2 , · · · , N } , and ˜ z k = z 0 z 1 · · · z k − 1 .

  22. Proof of Gansner’s Formula (a) for Shapes A reverse plane partition π ∈ A ( D ( λ )) is obtained by gluing two shifted reverse plane partitions σ ∈ A ( S ( µ )) and ρ ∈ A ( S ( ν )) with the same profile τ = σ [0] = ρ [0] , where two strict partitions µ and ν are defined by ν i = t λ i − i + 1 µ i = λ i − i + 1 , (1 ≤ i ≤ p ( λ )) . Example If λ = (4 , 3 , 1) , then µ = (4 , 2) , ν = (3 , 1) and 0 0 1 3 � 0 0 1 3 � , 0 1 3 1 2 2 ← → . 2 2 2 3 Hence Gansner’s formula follows from the Cauchy identity 1 � � s τ ( X ) s τ ( Y ) = . 1 − x i y j τ i,j

  23. Proof of Gansner’s Formula (b) for Shifted Shapes We have z σ = � � R S ( µ ) ,τ ( z ) , τ σ ∈A ( S ( µ )) so Gansner’s formula follows from the Schur–Littlewood identity 1 1 � � � s τ ( X ) = . 1 − x i 1 − x i x j τ i i<j

  24. ( q, t ) -Deformation of Gansner’s Formula

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend