truncated moreau s sweeping process
play

Truncated Moreaus sweeping process Florent Nacry - Institut Elie - PowerPoint PPT Presentation

Truncated Moreaus sweeping process Florent Nacry - Institut Elie Cartan de Lorraine joint works with Lionel Thibault - Institut Montpellirain Alexander Grothendieck Journes annuelles du GdR MOA, Universit de Pau et des Pays de lAdour,


  1. Truncated Moreau’s sweeping process Florent Nacry - Institut Elie Cartan de Lorraine joint works with Lionel Thibault - Institut Montpelliérain Alexander Grothendieck Journées annuelles du GdR MOA, Université de Pau et des Pays de l’Adour, 17-19 Octobre 2018

  2. 1. An introduction to Moreau’s sweeping process • Notation and preliminaries • Introduction • Three ways to handle sweeping process 2. Sweeping process with truncated variation • First result of sweeping process theory • Hausdorff-Pompeiu truncated distances • Existence under truncated variation 3. Some variants • Few words on second order theory • Nonconvex possibly state-dependent 1

  3. An introduction to Moreau’s sweeping process

  4. Notation • The letter H stands for a real Hilbert space endowed with an inner product �· , ·� and the associated norm �·� . • I := [0 , T ] is a compact interval of R for some given real T > 0. • C : I ⇒ H is a given multimapping with nonempty closed values (="moving set"). • Distance from A ⊂ H to x ∈ H is d ( x , A ) := inf a ∈ A � x − a � . 2

  5. Mechanical point of view Moreau’s sweeping process: find absolutely continuous mappings u : I = [0 , T ] → H satisfying for a given u 0 ∈ C (0)   − ˙ u ( t ) ∈ N ( C ( t ); u ( t )) := { v ∈ H : � v , x − u ( t ) � ≤ 0 , ∀ x ∈ C ( t ) } λ -a.e. t ∈ I ,   u ( t ) ∈ C ( t ) for all t ∈ I ,    u (0) = u 0 . 3

  6. Mechanical point of view Moreau’s sweeping process: find absolutely continuous mappings u : I = [0 , T ] → H satisfying for a given u 0 ∈ C (0)   − ˙ u ( t ) ∈ N ( C ( t ); u ( t )) := { v ∈ H : � v , x − u ( t ) � ≤ 0 , ∀ x ∈ C ( t ) } λ -a.e. t ∈ I ,   u ( t ) ∈ C ( t ) for all t ∈ I ,    u (0) = u 0 . 3

  7. Applications ◮ Granular material ◮ Planning procedure ◮ Non-regular electrical circuits ◮ Crowd motion ◮ Hysteresis ◮ Evolution of sandpiles 4

  8. Variants • Large number of variants: ◮ Stochastic (1973); ◮ State-dependent (1987/1998); ◮ Nonconvex (1988); ◮ With perturbations (1984); ◮ In Banach spaces framework (2010); ◮ Second order (Schatzman’s sense (1978), Castaing’s sense (1988)); ◮ Controlled (2015). 5

  9. Handling sweeping process: the catching-up algorithm 6

  10. Handling sweeping process: the catching-up algorithm ◮ Step 1: Time discretization t n i := i T 2 n and iterations u n i ) ( u n i +1 ∈ Proj C ( t n i ) � / 0 . ֒ → Assumption on C ( · ) is needed here: convex-valued? ball-compact?... 7

  11. Handling sweeping process: the catching-up algorithm ◮ Step 1: Time discretization t n i := i T 2 n and iterations u n i ) ( u n i +1 ∈ Proj C ( t n i ) � / 0 . ֒ → Assumption on C ( · ) is needed here: convex-valued? ball-compact?... ◮ Step 2: Construction of step mappings t − t n I := [0 , T ] ∋ t �→ u n ( t ) := u n i ( u n i +1 − u n i + i ) . t n i +1 − t n i 7

  12. Handling sweeping process: the catching-up algorithm ◮ Step 1: Time discretization t n i := i T 2 n and iterations u n i ) ( u n i +1 ∈ Proj C ( t n i ) � / 0 . ֒ → Assumption on C ( · ) is needed here: convex-valued? ball-compact?... ◮ Step 2: Construction of step mappings t − t n I := [0 , T ] ∋ t �→ u n ( t ) := u n i ( u n i +1 − u n i + i ) . t n i +1 − t n i ◮ Step 3: Convergence of ( u n ( · )) n to u ( · ) : [0 , T ] → H . ֒ → What kind of convergence? Assumption on the behavior of C ( · ) is needed here: ∃ L > 0 , ∀ s , t ∈ I , sup | d C ( t ) ( x ) − d C ( s ) ( y ) | ≤ L | t − s | . x ∈ H 7

  13. Handling sweeping process: the catching-up algorithm ◮ Step 1: Time discretization t n i := i T 2 n and iterations u n i ) ( u n i +1 ∈ Proj C ( t n i ) � / 0 . ֒ → Assumption on C ( · ) is needed here: convex-valued? ball-compact?... ◮ Step 2: Construction of step mappings t − t n I := [0 , T ] ∋ t �→ u n ( t ) := u n i ( u n i +1 − u n i + i ) . t n i +1 − t n i ◮ Step 3: Convergence of ( u n ( · )) n to u ( · ) : [0 , T ] → H . ֒ → What kind of convergence? Assumption on the behavior of C ( · ) is needed here: ∃ L > 0 , ∀ s , t ∈ I , sup | d C ( t ) ( x ) − d C ( s ) ( y ) | ≤ L | t − s | . x ∈ H ◮ Step 4: u ( · ) is a solution of the Moreau’s sweeping process. ֒ → It requires a closedness property: ∀ t n ↓ t , ∀ C ( t n ) ∋ x n → x , n → + ∞ σ ( z , ∂ d C ( t n ) ( x n )) ≤ σ ( z , ∂ d C ( t ) ( x )) . limsup 7

  14. Handling sweeping process: regularization To solve the differential inclusion   − ˙ u ( t ) ∈ N ( C ( t ); u ( t )) λ -a.e. t ∈ I ,   ( SP ) u ( t ) ∈ C ( t ) for all t ∈ I ,    u (0) = u 0 . 8

  15. Handling sweeping process: regularization To solve the differential inclusion   − ˙ u ( t ) ∈ N ( C ( t ); u ( t )) λ -a.e. t ∈ I ,   ( SP ) u ( t ) ∈ C ( t ) for all t ∈ I ,    u (0) = u 0 . ◮ Step 1: Find a family or ordinary differential equation � − ˙ u j ( t ) = f j ( t , u j ( t )) , ( E j ) u j (0) = u 0 . 8

  16. Handling sweeping process: regularization To solve the differential inclusion   − ˙ u ( t ) ∈ N ( C ( t ); u ( t )) λ -a.e. t ∈ I ,   ( SP ) u ( t ) ∈ C ( t ) for all t ∈ I ,    u (0) = u 0 . ◮ Step 1: Find a family or ordinary differential equation � − ˙ u j ( t ) = f j ( t , u j ( t )) , ( E j ) u j (0) = u 0 . ◮ Step 2: Established a convergence ? u j ( · ) → u ( · ) . 8

  17. Handling sweeping process: regularization To solve the differential inclusion   − ˙ u ( t ) ∈ N ( C ( t ); u ( t )) λ -a.e. t ∈ I ,   ( SP ) u ( t ) ∈ C ( t ) for all t ∈ I ,    u (0) = u 0 . ◮ Step 1: Find a family or ordinary differential equation � − ˙ u j ( t ) = f j ( t , u j ( t )) , ( E j ) u j (0) = u 0 . ◮ Step 2: Established a convergence ? u j ( · ) → u ( · ) . ◮ Step 3: Show that u ( · ) is a solution of ( SP ). 8

  18. Handling sweeping process: reduction Assume that there is a nondecreasing absolutely continuous mapping v : I → R + such that | d ( x , C ( t )) − d ( x , C ( s )) | ≤ v ( t ) − v ( s ) for all s ≤ t . haus ( C ( s ) , C ( t )) := sup x ∈ H 9

  19. Handling sweeping process: reduction Assume that there is a nondecreasing absolutely continuous mapping v : I → R + such that | d ( x , C ( t )) − d ( x , C ( s )) | ≤ v ( t ) − v ( s ) for all s ≤ t . haus ( C ( s ) , C ( t )) := sup x ∈ H Idea: The following constrained differential inclusion is equivalent (under assumptions!)   − ˙ u ( t ) ∈ N ( C ( t ); u ( t )) λ -a.e. t ∈ I ,   u ( t ) ∈ C ( t ) for all t ∈ I ,    u (0) = u 0 , to the unconstrained one � − ˙ u ( t ) ∈ ˙ v ( t ) ∂ d ( u ( t ) , C ( t )) λ -a.e. t ∈ I , u (0) = u 0 . 9

  20. Sweeping process with truncated variation

  21. First existence result exc ( A , B ) := sup x ∈ A d ( x , B ) . Theorem (Moreau (1971)) Let u 0 ∈ C (0). Assume that the multimapping C ( · ) is nonempty closed convex valued and exc ( C ( s ) , C ( t )) ≤ v ( t ) − v ( s ) for all 0 ≤ s ≤ t ≤ T , for some nondecreasing absolutely continuous mapping v : [0 , T ] → R + . 10

  22. First existence result exc ( A , B ) := sup x ∈ A d ( x , B ) . Theorem (Moreau (1971)) Let u 0 ∈ C (0). Assume that the multimapping C ( · ) is nonempty closed convex valued and exc ( C ( s ) , C ( t )) ≤ v ( t ) − v ( s ) for all 0 ≤ s ≤ t ≤ T , for some nondecreasing absolutely continuous mapping v : [0 , T ] → R + . Then, there exists one and only one absolutely continuous mapping u : [0 , T ] → H satisfying   − ˙ u ( t ) ∈ N ( C ( t ); u ( t )) λ -a.e. t ∈ [0 , T ] ,   u ( t ) ∈ C ( t ) for all t ∈ [0 , T ] ,    u (0) = u 0 . 10

  23. Hausdorff-Pompeiu distance Let S , S ′ be nonempty subsets of H . One defines the Hausdorff-Pompeiu distance as � � haus ( S , S ′ ) = max exc ( S , S ′ ) , exc ( S ′ , S ) , where exc ( S , S ′ ) = sup d ( x , S ′ ) . x ∈ S 11

  24. Hausdorff-Pompeiu distance Let S , S ′ be nonempty subsets of H . One defines the Hausdorff-Pompeiu distance as � � haus ( S , S ′ ) = max exc ( S , S ′ ) , exc ( S ′ , S ) , where exc ( S , S ′ ) = sup d ( x , S ′ ) . x ∈ S One has the following equalities � � exc ( S , S ′ ) = sup d ( x , S ′ ) − d ( x , S ) x ∈ X and � � haus ( S , S ′ ) = sup � d ( x , S ′ ) − d ( x , S ) � . x ∈ X 11

  25. Hyperplane case Let ζ : I → H and β : I → R be two mappings. Consider the moving hyperplane C ( t ) := { x ∈ H : � ζ ( t ) , x �− β ( t ) ≤ 0 } . 12

  26. Hyperplane case Let ζ : I → H and β : I → R be two mappings. Consider the moving hyperplane C ( t ) := { x ∈ H : � ζ ( t ) , x �− β ( t ) ≤ 0 } . 12

  27. Hyperplane case Let ζ : I → H and β : I → R be two mappings. Consider the moving hyperplane C ( t ) := { x ∈ H : � ζ ( t ) , x �− β ( t ) ≤ 0 } . ֒ → The Hausdorff-Pompeiu excess exc ( · , · ) is not suitable to handle unbounded sweeping process. 12

  28. Truncated Hausdorff-Pompeiu distance ρ ∈ ]0 , + ∞ ]; B := { x ∈ H : � x � ≤ 1 } . 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend