trivariate density revisited
play

Trivariate Density Revisited Steven E. Shreve Carnegie Mellon - PowerPoint PPT Presentation

Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University Conference in Honor of Ioannis Karatzas Columbia University June 48, 2012 1 / 94 Outline Rank-based diffusion Bang-bang control Trivariate density Personal


  1. Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University – Conference in Honor of Ioannis Karatzas Columbia University June 4–8, 2012 1 / 94

  2. Outline Rank-based diffusion Bang-bang control Trivariate density Personal reflections 2 / 94

  3. Rank-based diffusion E. R. Fernholz, T. Ichiba, I. Karatzas & V. Prokaj, Planar diffusions with rank-based characteristics and perturbed Tanaka equation, Probability Theory and Related Fields , to appear. dX 1 = g dt + σ dB 1 dX 2 = − h dt + ρ dB 2 dX 1 = − h dt + ρ dB 1 dX 2 = g dt + σ dB 2 ρ 2 + σ 2 = 1 g + h > 0 B 1 , B 2 independent Br. motions 3 / 94

  4. Remarks Karatzas, et. al. examine: ◮ Weak and strong existence and uniqueness in law; ◮ Properties of X 1 ∨ X 2 and X 1 ∧ X 2 ; ◮ The reversed dynamics of ( X 1 , X 2 ); 4 / 94

  5. Remarks Karatzas, et. al. examine: ◮ Weak and strong existence and uniqueness in law; ◮ Properties of X 1 ∨ X 2 and X 1 ∧ X 2 ; ◮ The reversed dynamics of ( X 1 , X 2 ); ◮ Transition probabilities ( X 1 , X 2 ). 5 / 94

  6. The difference process Define Y ( t ) = X 1 ( t ) − X 2 ( t ) . 6 / 94

  7. The difference process Define Y ( t ) = X 1 ( t ) − X 2 ( t ) . Then dY = l I { Y ≤ 0 } ( g + h ) dt − l I { Y > 0 } ( g + h ) dt + l I { Y ≤ 0 } σ dB 1 − l I { Y ≤ 0 } ρ dB 2 + l I { Y > 0 } ρ dB 1 − l I { Y > 0 } σ dB 2 7 / 94

  8. The difference process Define Y ( t ) = X 1 ( t ) − X 2 ( t ) . Then dY = l I { Y ≤ 0 } ( g + h ) dt − l I { Y > 0 } ( g + h ) dt + l I { Y ≤ 0 } σ dB 1 − l I { Y ≤ 0 } ρ dB 2 + l I { Y > 0 } ρ dB 1 − l I { Y > 0 } σ dB 2 � � = − λ sgn Y ( t ) dt + dW , 8 / 94

  9. The difference process Define Y ( t ) = X 1 ( t ) − X 2 ( t ) . Then dY = l I { Y ≤ 0 } ( g + h ) dt − l I { Y > 0 } ( g + h ) dt + l I { Y ≤ 0 } σ dB 1 − l I { Y ≤ 0 } ρ dB 2 + l I { Y > 0 } ρ dB 1 − l I { Y > 0 } σ dB 2 � � = − λ sgn Y ( t ) dt + dW , where λ = g + h > 0 , 9 / 94

  10. The difference process Define Y ( t ) = X 1 ( t ) − X 2 ( t ) . Then dY = l I { Y ≤ 0 } ( g + h ) dt − l I { Y > 0 } ( g + h ) dt + l I { Y ≤ 0 } σ dB 1 − l I { Y ≤ 0 } ρ dB 2 + l I { Y > 0 } ρ dB 1 − l I { Y > 0 } σ dB 2 � � = − λ sgn Y ( t ) dt + dW , where λ = g + h > 0 , � � dW = I { Y ≤ 0 } dB 1 − l l I { Y > 0 } dB 2 σ � �� � dW 1 � � + ρ l I { Y > 0 } dB 1 − l I { Y ≤ 0 } dB 2 . � �� � dW 2 10 / 94

  11. The sum process Define Z ( t ) = X 1 ( t ) + X 2 ( t ) . 11 / 94

  12. The sum process Define Z ( t ) = X 1 ( t ) + X 2 ( t ) . Then dZ = ( g − h ) dt + l I { Y ≤ 0 } σ dB 1 + l I { Y ≤ 0 } ρ dB 2 + l I { Y > 0 } ρ dB 1 + l I { Y > 0 } σ dB 2 12 / 94

  13. The sum process Define Z ( t ) = X 1 ( t ) + X 2 ( t ) . Then dZ = ( g − h ) dt + l I { Y ≤ 0 } σ dB 1 + l I { Y ≤ 0 } ρ dB 2 + l I { Y > 0 } ρ dB 1 + l I { Y > 0 } σ dB 2 = ν dt + dV , 13 / 94

  14. The sum process Define Z ( t ) = X 1 ( t ) + X 2 ( t ) . Then dZ = ( g − h ) dt + l I { Y ≤ 0 } σ dB 1 + l I { Y ≤ 0 } ρ dB 2 + l I { Y > 0 } ρ dB 1 + l I { Y > 0 } σ dB 2 = ν dt + dV , where ν = g − h , 14 / 94

  15. The sum process Define Z ( t ) = X 1 ( t ) + X 2 ( t ) . Then dZ = ( g − h ) dt + l I { Y ≤ 0 } σ dB 1 + l I { Y ≤ 0 } ρ dB 2 + l I { Y > 0 } ρ dB 1 + l I { Y > 0 } σ dB 2 = ν dt + dV , where ν = g − h , � � dV = l I { Y ≤ 0 } dB 1 + l I { Y > 0 } dB 2 σ � �� � dV 1 � � + ρ I { Y > 0 } dB 1 + l l I { Y ≤ 0 } dB 2 . � �� � dV 2 15 / 94

  16. Summary X 1 ( t ) + X 2 ( t ) = Z ( t ) = X 1 (0) + X 2 (0) + ν t + V ( t ) , X 1 ( t ) − X 2 ( t ) = Y ( t ) � t � � = X 1 (0) + X 2 (0) − λ sgn Y ( s ) ds + W ( t ) , 0 where V and W are correlated Brownian motions. 16 / 94

  17. Summary X 1 ( t ) + X 2 ( t ) = Z ( t ) = X 1 (0) + X 2 (0) + ν t + V ( t ) , X 1 ( t ) − X 2 ( t ) = Y ( t ) � t � � = X 1 (0) + X 2 (0) − λ sgn Y ( s ) ds + W ( t ) , 0 where V and W are correlated Brownian motions. ◮ To determine transition probabilities for ( X 1 , X 2 ), it suffices to determine transition probabilites for ( Z , Y ). 17 / 94

  18. Summary X 1 ( t ) + X 2 ( t ) = Z ( t ) = X 1 (0) + X 2 (0) + ν t + V ( t ) , X 1 ( t ) − X 2 ( t ) = Y ( t ) � t � � = X 1 (0) + X 2 (0) − λ sgn Y ( s ) ds + W ( t ) , 0 where V and W are correlated Brownian motions. ◮ To determine transition probabilities for ( X 1 , X 2 ), it suffices to determine transition probabilites for ( Z , Y ). ◮ ( Z , W ) is a Gaussian process. ◮ Y is determined by W by � � dY ( t ) = − λ sgn Y ( t ) dt + dW ( t ) . 18 / 94

  19. Summary X 1 ( t ) + X 2 ( t ) = Z ( t ) = X 1 (0) + X 2 (0) + ν t + V ( t ) , X 1 ( t ) − X 2 ( t ) = Y ( t ) � t � � = X 1 (0) + X 2 (0) − λ sgn Y ( s ) ds + W ( t ) , 0 where V and W are correlated Brownian motions. ◮ To determine transition probabilities for ( X 1 , X 2 ), it suffices to determine transition probabilites for ( Z , Y ). ◮ ( Z , W ) is a Gaussian process. ◮ Y is determined by W by � � dY ( t ) = − λ sgn Y ( t ) dt + dW ( t ) . ◮ It suffices to determine the distribution of ( W ( t ) , Y ( t )). 19 / 94

  20. Bang-bang control Minimize � ∞ e − t X 2 t dt , E 0 Subject to � t X t = x + u s ds + W t , a ≤ u t ≤ b , t ≥ 0 . 0 20 / 94

  21. Bang-bang control Minimize � ∞ e − t X 2 t dt , E 0 Subject to � t X t = x + u s ds + W t , a ≤ u t ≤ b , t ≥ 0 . 0 Beneˇ s, Shepp & Witsenhausen (1980): Solution is u t = f ( X t ), where � b , if x < δ, f ( x ) = a , if x ≥ δ, √ √ b 2 + 2 + b ) − 1 − ( a 2 + 2 − a ) − 1 . and δ = ( 21 / 94

  22. Bang-bang control Minimize � ∞ e − t X 2 t dt , E 0 Subject to � t X t = x + u s ds + W t , a ≤ u t ≤ b , t ≥ 0 . 0 Beneˇ s, Shepp & Witsenhausen (1980): Solution is u t = f ( X t ), where � b , if x < δ, f ( x ) = a , if x ≥ δ, √ √ b 2 + 2 + b ) − 1 − ( a 2 + 2 − a ) − 1 . and δ = ( What is the transition density for the controlled process X ? (Beneˇ s, et. al. computed its Laplace transform.) 22 / 94

  23. Transition density by Girsanov Compute the transition density for X , where � t X t = x + f ( X s ) ds + W t . 0 23 / 94

  24. Transition density by Girsanov Compute the transition density for X , where � t X t = x + f ( X s ) ds + W t . 0 Start with a probability measure P X under which X is a Brownian motion. Define W by � t W t = X t − x − f ( X s ) ds . 0 24 / 94

  25. Transition density by Girsanov Compute the transition density for X , where � t X t = x + f ( X s ) ds + W t . 0 Start with a probability measure P X under which X is a Brownian motion. Define W by � t W t = X t − x − f ( X s ) ds . 0 Change to a probability measure P under which W is a Brownian motion. Compute the transition density for X under P . 25 / 94

  26. Transition density by Girsanov Compute the transition density for X , where � t X t = x + f ( X s ) ds + W t . 0 Start with a probability measure P X under which X is a Brownian motion. Define W by � t W t = X t − x − f ( X s ) ds . 0 Change to a probability measure P under which W is a Brownian motion. Compute the transition density for X under P . � � � d P � P { X t ∈ B } = E X l I { X t ∈ B } , � d P X � F t where �� t � t � � d P f ( X s ) dX s − 1 � f 2 ( X s ) ds = exp . � d P X 2 � 0 0 F t 26 / 94

  27. Transition density by Girsanov (continued) To compute P { X t ∈ B } , we need the joint distribution of � t � t f 2 ( X s ) ds . X t , f ( X s ) dX s , 0 0 27 / 94

  28. Transition density by Girsanov (continued) To compute P { X t ∈ B } , we need the joint distribution of � t � t f 2 ( X s ) ds . X t , f ( X s ) dX s , 0 0 Assume without loss of generality that δ = 0. Define � bx , � x if x ≤ 0 , F ( x ) = f ( ξ ) d ξ = ax , if x ≥ 0 . 0 Tanaka’s formula implies � t f ( X s ) dX s + 1 2( a − b ) L X F ( X t ) = t 0 so � t f ( X s ) dX s = F ( X t ) − 1 2( a − b ) L X t . 0 28 / 94

  29. Transition density by Girsanov (continued) To compute P { X t ∈ B } , we need the joint distribution of � t � t f 2 ( X s ) ds . X t , f ( X s ) dX s , 0 0 Assume without loss of generality that δ = 0. Define � bx , � x if x ≤ 0 , F ( x ) = f ( ξ ) d ξ = ax , if x ≥ 0 . 0 Tanaka’s formula implies � t f ( X s ) dX s + 1 2( a − b ) L X F ( X t ) = t 0 so � t f ( X s ) dX s = F ( X t ) − 1 2( a − b ) L X t . 0 We need the joint distribution of � t L X f 2 ( X s ) ds . X t , t , 0 29 / 94

  30. Transition density by Girsanov (continued) Define � t � � Γ + ( t ) = l I (0 , ∞ ) X ( s ) ds , 0 � t � � Γ − ( t ) = l I ( −∞ , 0) X ( s ) ds = t − Γ + ( t ) . 0 30 / 94

  31. Transition density by Girsanov (continued) Define � t � � Γ + ( t ) = l I (0 , ∞ ) X ( s ) ds , 0 � t � � Γ − ( t ) = l I ( −∞ , 0) X ( s ) ds = t − Γ + ( t ) . 0 Then � t f 2 ( X s ) ds = b 2 Γ − ( t ) + a 2 Γ + ( t ) = b 2 t + ( a 2 − b 2 )Γ + ( t ) . 0 31 / 94

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend